MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcncf2 Structured version   Unicode version

Theorem elcncf2 21260
Description: Version of elcncf 21259 with arguments commuted. (Contributed by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
elcncf2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
Distinct variable groups:    x, w, y, z, A    w, F, x, y, z    w, B, x, y, z

Proof of Theorem elcncf2
StepHypRef Expression
1 elcncf 21259 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
2 simplll 757 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  A  C_  CC )
3 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  x  e.  A )
42, 3sseldd 3487 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  x  e.  CC )
5 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  w  e.  A )
62, 5sseldd 3487 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  w  e.  CC )
74, 6abssubd 13258 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( abs `  ( x  -  w
) )  =  ( abs `  ( w  -  x ) ) )
87breq1d 4443 . . . . . . . . 9  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( ( abs `  ( x  -  w ) )  < 
z  <->  ( abs `  (
w  -  x ) )  <  z ) )
9 simpllr 758 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  B  C_  CC )
10 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  F : A
--> B )
1110, 3ffvelrnd 6013 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( F `  x )  e.  B
)
129, 11sseldd 3487 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( F `  x )  e.  CC )
1310, 5ffvelrnd 6013 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( F `  w )  e.  B
)
149, 13sseldd 3487 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( F `  w )  e.  CC )
1512, 14abssubd 13258 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  =  ( abs `  ( ( F `  w )  -  ( F `  x ) ) ) )
1615breq1d 4443 . . . . . . . . 9  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( ( abs `  ( ( F `
 x )  -  ( F `  w ) ) )  <  y  <->  ( abs `  ( ( F `  w )  -  ( F `  x ) ) )  <  y ) )
178, 16imbi12d 320 . . . . . . . 8  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <-> 
( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
1817anassrs 648 . . . . . . 7  |-  ( ( ( ( ( A 
C_  CC  /\  B  C_  CC )  /\  F : A
--> B )  /\  x  e.  A )  /\  w  e.  A )  ->  (
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <-> 
( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
1918ralbidva 2877 . . . . . 6  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  x  e.  A )  ->  ( A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <->  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
2019rexbidv 2952 . . . . 5  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  x  e.  A )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
2120ralbidv 2880 . . . 4  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  /\  x  e.  A )  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
2221ralbidva 2877 . . 3  |-  ( ( ( A  C_  CC  /\  B  C_  CC )  /\  F : A --> B )  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
2322pm5.32da 641 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )  <->  ( F : A
--> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
241, 23bitrd 253 1  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1802   A.wral 2791   E.wrex 2792    C_ wss 3458   class class class wbr 4433   -->wf 5570   ` cfv 5574  (class class class)co 6277   CCcc 9488    < clt 9626    - cmin 9805   RR+crp 11224   abscabs 13041   -cn->ccncf 21246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-po 4786  df-so 4787  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-er 7309  df-map 7420  df-en 7515  df-dom 7516  df-sdom 7517  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-2 10595  df-cj 12906  df-re 12907  df-im 12908  df-abs 13043  df-cncf 21248
This theorem is referenced by:  cncfi  21264  cncffvrn  21268  abscncf  21271  recncf  21272  imcncf  21273  cjcncf  21274  mulc1cncf  21275  cncfco  21277  volcn  21881  ftc1a  22304  ulmcn  22659  ftc1anc  30066
  Copyright terms: Public domain W3C validator