MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcncf1ii Structured version   Unicode version

Theorem elcncf1ii 21268
Description: Membership in the set of continuous complex functions from 
A to  B. (Contributed by Paul Chapman, 26-Nov-2007.)
Hypotheses
Ref Expression
elcncf1i.1  |-  F : A
--> B
elcncf1i.2  |-  ( ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ )
elcncf1i.3  |-  ( ( ( x  e.  A  /\  w  e.  A
)  /\  y  e.  RR+ )  ->  ( ( abs `  ( x  -  w ) )  < 
Z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
Assertion
Ref Expression
elcncf1ii  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A -cn-> B ) )
Distinct variable groups:    x, w, y, A    w, B, x, y    w, F, x, y    w, Z
Allowed substitution hints:    Z( x, y)

Proof of Theorem elcncf1ii
StepHypRef Expression
1 elcncf1i.1 . . . 4  |-  F : A
--> B
21a1i 11 . . 3  |-  ( T. 
->  F : A --> B )
3 elcncf1i.2 . . . 4  |-  ( ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ )
43a1i 11 . . 3  |-  ( T. 
->  ( ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ ) )
5 elcncf1i.3 . . . 4  |-  ( ( ( x  e.  A  /\  w  e.  A
)  /\  y  e.  RR+ )  ->  ( ( abs `  ( x  -  w ) )  < 
Z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
65a1i 11 . . 3  |-  ( T. 
->  ( ( ( x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )  ->  (
( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
72, 4, 6elcncf1di 21267 . 2  |-  ( T. 
->  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A -cn-> B ) ) )
87trud 1388 1  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A -cn-> B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   T. wtru 1380    e. wcel 1767    C_ wss 3481   class class class wbr 4453   -->wf 5590   ` cfv 5594  (class class class)co 6295   CCcc 9502    < clt 9640    - cmin 9817   RR+crp 11232   abscabs 13047   -cn->ccncf 21248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-map 7434  df-cncf 21250
This theorem is referenced by:  logcnlem5  22893
  Copyright terms: Public domain W3C validator