MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcls3 Unicode version

Theorem elcls3 16652
Description: Membership in a closure in terms of the members of a basis. Theorem 6.5(b) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.) (Revised by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
elcls3.1  |-  ( ph  ->  J  =  ( topGen `  B ) )
elcls3.2  |-  ( ph  ->  X  =  U. J
)
elcls3.3  |-  ( ph  ->  B  e.  TopBases )
elcls3.4  |-  ( ph  ->  S  C_  X )
elcls3.5  |-  ( ph  ->  P  e.  X )
Assertion
Ref Expression
elcls3  |-  ( ph  ->  ( P  e.  ( ( cls `  J
) `  S )  <->  A. x  e.  B  ( P  e.  x  -> 
( x  i^i  S
)  =/=  (/) ) ) )
Distinct variable groups:    x, B    x, P    x, S
Allowed substitution hints:    ph( x)    J( x)    X( x)

Proof of Theorem elcls3
StepHypRef Expression
1 elcls3.1 . . . 4  |-  ( ph  ->  J  =  ( topGen `  B ) )
2 elcls3.3 . . . . 5  |-  ( ph  ->  B  e.  TopBases )
3 tgcl 16539 . . . . 5  |-  ( B  e.  TopBases  ->  ( topGen `  B
)  e.  Top )
42, 3syl 17 . . . 4  |-  ( ph  ->  ( topGen `  B )  e.  Top )
51, 4eqeltrd 2327 . . 3  |-  ( ph  ->  J  e.  Top )
6 elcls3.4 . . . 4  |-  ( ph  ->  S  C_  X )
7 elcls3.2 . . . 4  |-  ( ph  ->  X  =  U. J
)
86, 7sseqtrd 3135 . . 3  |-  ( ph  ->  S  C_  U. J )
9 elcls3.5 . . . 4  |-  ( ph  ->  P  e.  X )
109, 7eleqtrd 2329 . . 3  |-  ( ph  ->  P  e.  U. J
)
11 eqid 2253 . . . 4  |-  U. J  =  U. J
1211elcls 16642 . . 3  |-  ( ( J  e.  Top  /\  S  C_  U. J  /\  P  e.  U. J )  ->  ( P  e.  ( ( cls `  J
) `  S )  <->  A. y  e.  J  ( P  e.  y  -> 
( y  i^i  S
)  =/=  (/) ) ) )
135, 8, 10, 12syl3anc 1187 . 2  |-  ( ph  ->  ( P  e.  ( ( cls `  J
) `  S )  <->  A. y  e.  J  ( P  e.  y  -> 
( y  i^i  S
)  =/=  (/) ) ) )
14 bastg 16536 . . . . . . . . 9  |-  ( B  e.  TopBases  ->  B  C_  ( topGen `
 B ) )
152, 14syl 17 . . . . . . . 8  |-  ( ph  ->  B  C_  ( topGen `  B ) )
1615, 1sseqtr4d 3136 . . . . . . 7  |-  ( ph  ->  B  C_  J )
1716sseld 3102 . . . . . 6  |-  ( ph  ->  ( y  e.  B  ->  y  e.  J ) )
1817imim1d 71 . . . . 5  |-  ( ph  ->  ( ( y  e.  J  ->  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) ) )  ->  (
y  e.  B  -> 
( P  e.  y  ->  ( y  i^i 
S )  =/=  (/) ) ) ) )
1918ralimdv2 2585 . . . 4  |-  ( ph  ->  ( A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) )  ->  A. y  e.  B  ( P  e.  y  ->  ( y  i^i  S
)  =/=  (/) ) ) )
20 eleq2 2314 . . . . . 6  |-  ( y  =  x  ->  ( P  e.  y  <->  P  e.  x ) )
21 ineq1 3271 . . . . . . 7  |-  ( y  =  x  ->  (
y  i^i  S )  =  ( x  i^i 
S ) )
2221neeq1d 2425 . . . . . 6  |-  ( y  =  x  ->  (
( y  i^i  S
)  =/=  (/)  <->  ( x  i^i  S )  =/=  (/) ) )
2320, 22imbi12d 313 . . . . 5  |-  ( y  =  x  ->  (
( P  e.  y  ->  ( y  i^i 
S )  =/=  (/) )  <->  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) ) )
2423cbvralv 2708 . . . 4  |-  ( A. y  e.  B  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) )  <->  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )
2519, 24syl6ib 219 . . 3  |-  ( ph  ->  ( A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) )  ->  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) ) ) )
26 simprl 735 . . . . . . . 8  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  y  e.  J )
271ad2antrr 709 . . . . . . . 8  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  J  =  ( topGen `  B
) )
2826, 27eleqtrd 2329 . . . . . . 7  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  y  e.  ( topGen `  B )
)
29 simprr 736 . . . . . . 7  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  P  e.  y )
30 tg2 16535 . . . . . . 7  |-  ( ( y  e.  ( topGen `  B )  /\  P  e.  y )  ->  E. z  e.  B  ( P  e.  z  /\  z  C_  y ) )
3128, 29, 30syl2anc 645 . . . . . 6  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  E. z  e.  B  ( P  e.  z  /\  z  C_  y ) )
32 eleq2 2314 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  ( P  e.  x  <->  P  e.  z ) )
33 ineq1 3271 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
x  i^i  S )  =  ( z  i^i 
S ) )
3433neeq1d 2425 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
( x  i^i  S
)  =/=  (/)  <->  ( z  i^i  S )  =/=  (/) ) )
3532, 34imbi12d 313 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) )  <->  ( P  e.  z  ->  ( z  i^i  S )  =/=  (/) ) ) )
3635rcla4cva 2820 . . . . . . . . . . . 12  |-  ( ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) )  /\  z  e.  B )  ->  ( P  e.  z  ->  ( z  i^i 
S )  =/=  (/) ) )
3736imp 420 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  /\  z  e.  B )  /\  P  e.  z
)  ->  ( z  i^i  S )  =/=  (/) )
38 ssdisj 3411 . . . . . . . . . . . . 13  |-  ( ( z  C_  y  /\  ( y  i^i  S
)  =  (/) )  -> 
( z  i^i  S
)  =  (/) )
3938ex 425 . . . . . . . . . . . 12  |-  ( z 
C_  y  ->  (
( y  i^i  S
)  =  (/)  ->  (
z  i^i  S )  =  (/) ) )
4039necon3d 2450 . . . . . . . . . . 11  |-  ( z 
C_  y  ->  (
( z  i^i  S
)  =/=  (/)  ->  (
y  i^i  S )  =/=  (/) ) )
4137, 40syl5com 28 . . . . . . . . . 10  |-  ( ( ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  /\  z  e.  B )  /\  P  e.  z
)  ->  ( z  C_  y  ->  ( y  i^i  S )  =/=  (/) ) )
4241exp31 590 . . . . . . . . 9  |-  ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  ->  (
z  e.  B  -> 
( P  e.  z  ->  ( z  C_  y  ->  ( y  i^i 
S )  =/=  (/) ) ) ) )
4342imp4a 575 . . . . . . . 8  |-  ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  ->  (
z  e.  B  -> 
( ( P  e.  z  /\  z  C_  y )  ->  (
y  i^i  S )  =/=  (/) ) ) )
4443rexlimdv 2628 . . . . . . 7  |-  ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  ->  ( E. z  e.  B  ( P  e.  z  /\  z  C_  y )  ->  ( y  i^i 
S )  =/=  (/) ) )
4544ad2antlr 710 . . . . . 6  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  ( E. z  e.  B  ( P  e.  z  /\  z  C_  y )  ->  ( y  i^i 
S )  =/=  (/) ) )
4631, 45mpd 16 . . . . 5  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  (
y  i^i  S )  =/=  (/) )
4746exp43 598 . . . 4  |-  ( ph  ->  ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  -> 
( y  e.  J  ->  ( P  e.  y  ->  ( y  i^i 
S )  =/=  (/) ) ) ) )
4847ralrimdv 2594 . . 3  |-  ( ph  ->  ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  ->  A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S
)  =/=  (/) ) ) )
4925, 48impbid 185 . 2  |-  ( ph  ->  ( A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) )  <->  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) ) )
5013, 49bitrd 246 1  |-  ( ph  ->  ( P  e.  ( ( cls `  J
) `  S )  <->  A. x  e.  B  ( P  e.  x  -> 
( x  i^i  S
)  =/=  (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   E.wrex 2510    i^i cin 3077    C_ wss 3078   (/)c0 3362   U.cuni 3727   ` cfv 4592   topGenctg 13216   Topctop 16463   TopBasesctb 16467   clsccl 16587
This theorem is referenced by:  2ndcsep  17017  ptclsg  17141  qdensere  18111
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-topgen 13218  df-top 16468  df-bases 16470  df-cld 16588  df-ntr 16589  df-cls 16590
  Copyright terms: Public domain W3C validator