MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elbl3 Structured version   Unicode version

Theorem elbl3 19809
Description: Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007.)
Assertion
Ref Expression
elbl3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  -> 
( A  e.  ( P ( ball `  D
) R )  <->  ( A D P )  <  R
) )

Proof of Theorem elbl3
StepHypRef Expression
1 elbl2 19807 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  -> 
( A  e.  ( P ( ball `  D
) R )  <->  ( P D A )  <  R
) )
2 xmetsym 19764 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  X
)  ->  ( P D A )  =  ( A D P ) )
323expb 1181 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( P  e.  X  /\  A  e.  X ) )  -> 
( P D A )  =  ( A D P ) )
43adantlr 707 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  -> 
( P D A )  =  ( A D P ) )
54breq1d 4290 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  -> 
( ( P D A )  <  R  <->  ( A D P )  <  R ) )
61, 5bitrd 253 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  -> 
( A  e.  ( P ( ball `  D
) R )  <->  ( A D P )  <  R
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755   class class class wbr 4280   ` cfv 5406  (class class class)co 6080   RR*cxr 9405    < clt 9406   *Metcxmt 17645   ballcbl 17647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-id 4623  df-po 4628  df-so 4629  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-1st 6566  df-2nd 6567  df-er 7089  df-map 7204  df-en 7299  df-dom 7300  df-sdom 7301  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-xadd 11078  df-psmet 17653  df-xmet 17654  df-bl 17656
This theorem is referenced by:  blcom  19811  reperflem  20237  reconnlem2  20246  ellimc3  21196  dvlip2  21309  lhop1lem  21327  ulmdvlem1  21750  pserdvlem2  21778  abelthlem2  21782  abelthlem3  21783  abelthlem5  21785  abelthlem7  21788  efopn  21988  logtayl  21990  xrlimcnp  22247  efrlim  22248  nvelbl  23907  tpr2rico  26196  lgamucov  26872  lgamcvg2  26889  heibor1lem  28552
  Copyright terms: Public domain W3C validator