MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elbl2 Structured version   Unicode version

Theorem elbl2 19964
Description: Membership in a ball. (Contributed by NM, 9-Mar-2007.)
Assertion
Ref Expression
elbl2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  -> 
( A  e.  ( P ( ball `  D
) R )  <->  ( P D A )  <  R
) )

Proof of Theorem elbl2
StepHypRef Expression
1 elbl 19962 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( A  e.  ( P ( ball `  D
) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
213expa 1187 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  R  e.  RR* )  ->  ( A  e.  ( P
( ball `  D ) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
32an32s 802 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  P  e.  X )  ->  ( A  e.  ( P
( ball `  D ) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
43adantrr 716 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  -> 
( A  e.  ( P ( ball `  D
) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
5 simprr 756 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  ->  A  e.  X )
65biantrurd 508 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  -> 
( ( P D A )  <  R  <->  ( A  e.  X  /\  ( P D A )  <  R ) ) )
74, 6bitr4d 256 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  -> 
( A  e.  ( P ( ball `  D
) R )  <->  ( P D A )  <  R
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1756   class class class wbr 4291   ` cfv 5417  (class class class)co 6090   RR*cxr 9416    < clt 9417   *Metcxmt 17800   ballcbl 17802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-id 4635  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-fv 5425  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-map 7215  df-xr 9421  df-psmet 17808  df-xmet 17809  df-bl 17811
This theorem is referenced by:  elbl3  19966  blcom  19968  imasf1obl  20062  prdsbl  20065  blsscls2  20078  metcnp  20115  zdis  20392  metdsge  20424  cfil3i  20779  iscfil3  20783  iscmet3lem2  20802  caubl  20817  dvlog2lem  22096  lgamucov  27023  isbnd3  28681  cntotbnd  28693  ismtyima  28700  stirlinglem5  29871
  Copyright terms: Public domain W3C validator