MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elbl2 Structured version   Unicode version

Theorem elbl2 20761
Description: Membership in a ball. (Contributed by NM, 9-Mar-2007.)
Assertion
Ref Expression
elbl2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  -> 
( A  e.  ( P ( ball `  D
) R )  <->  ( P D A )  <  R
) )

Proof of Theorem elbl2
StepHypRef Expression
1 elbl 20759 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( A  e.  ( P ( ball `  D
) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
213expa 1196 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  R  e.  RR* )  ->  ( A  e.  ( P
( ball `  D ) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
32an32s 802 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  P  e.  X )  ->  ( A  e.  ( P
( ball `  D ) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
43adantrr 716 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  -> 
( A  e.  ( P ( ball `  D
) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
5 simprr 756 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  ->  A  e.  X )
65biantrurd 508 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  -> 
( ( P D A )  <  R  <->  ( A  e.  X  /\  ( P D A )  <  R ) ) )
74, 6bitr4d 256 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( P  e.  X  /\  A  e.  X ) )  -> 
( A  e.  ( P ( ball `  D
) R )  <->  ( P D A )  <  R
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1767   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   RR*cxr 9639    < clt 9640   *Metcxmt 18273   ballcbl 18275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-1st 6795  df-2nd 6796  df-map 7434  df-xr 9644  df-psmet 18281  df-xmet 18282  df-bl 18284
This theorem is referenced by:  elbl3  20763  blcom  20765  imasf1obl  20859  prdsbl  20862  blsscls2  20875  metcnp  20912  zdis  21189  metdsge  21221  cfil3i  21576  iscfil3  21580  iscmet3lem2  21599  caubl  21614  dvlog2lem  22899  lgamucov  28405  isbnd3  30207  cntotbnd  30219  ismtyima  30226  stirlinglem5  31701
  Copyright terms: Public domain W3C validator