MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elbl Unicode version

Theorem elbl 18371
Description: Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
elbl  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( A  e.  ( P ( ball `  D
) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )

Proof of Theorem elbl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 blval 18369 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  =  { x  e.  X  |  ( P D x )  < 
R } )
21eleq2d 2471 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( A  e.  ( P ( ball `  D
) R )  <->  A  e.  { x  e.  X  | 
( P D x )  <  R }
) )
3 oveq2 6048 . . . 4  |-  ( x  =  A  ->  ( P D x )  =  ( P D A ) )
43breq1d 4182 . . 3  |-  ( x  =  A  ->  (
( P D x )  <  R  <->  ( P D A )  <  R
) )
54elrab 3052 . 2  |-  ( A  e.  { x  e.  X  |  ( P D x )  < 
R }  <->  ( A  e.  X  /\  ( P D A )  < 
R ) )
62, 5syl6bb 253 1  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( A  e.  ( P ( ball `  D
) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   {crab 2670   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   RR*cxr 9075    < clt 9076   * Metcxmt 16641   ballcbl 16643
This theorem is referenced by:  elbl2  18373  xblpnf  18379  bldisj  18381  blgt0  18382  xblss2  18385  blhalf  18388  xblcntr  18394  xbln0  18397  blin  18404  blss  18408  blres  18414  imasf1obl  18471  prdsbl  18474  blcls  18489  metcnp  18524  dscopn  18574  cnbl0  18761  bl2ioo  18776  blcvx  18782  xrsmopn  18796  recld2  18798  cnheibor  18933  nmhmcn  19081  lmmbr2  19165  iscau2  19183  dvlip2  19832  psercn  20295  abelth  20310  logtayl  20504  logtayl2  20506
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-map 6979  df-xr 9080  df-psmet 16649  df-xmet 16650  df-bl 16652
  Copyright terms: Public domain W3C validator