MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabrex Structured version   Unicode version

Theorem elabrex 6163
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014.)
Hypothesis
Ref Expression
elabrex.1  |-  B  e. 
_V
Assertion
Ref Expression
elabrex  |-  ( x  e.  A  ->  B  e.  { y  |  E. x  e.  A  y  =  B } )
Distinct variable groups:    y, B    x, y, A
Allowed substitution hint:    B( x)

Proof of Theorem elabrex
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tru 1441 . . . 4  |- T.
2 csbeq1a 3410 . . . . . . 7  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
32equcoms 1847 . . . . . 6  |-  ( z  =  x  ->  B  =  [_ z  /  x ]_ B )
4 a1tru 1453 . . . . . 6  |-  ( z  =  x  -> T.  )
53, 42thd 243 . . . . 5  |-  ( z  =  x  ->  ( B  =  [_ z  /  x ]_ B  <-> T.  )
)
65rspcev 3188 . . . 4  |-  ( ( x  e.  A  /\ T.  )  ->  E. z  e.  A  B  =  [_ z  /  x ]_ B )
71, 6mpan2 675 . . 3  |-  ( x  e.  A  ->  E. z  e.  A  B  =  [_ z  /  x ]_ B )
8 elabrex.1 . . . 4  |-  B  e. 
_V
9 eqeq1 2433 . . . . 5  |-  ( y  =  B  ->  (
y  =  [_ z  /  x ]_ B  <->  B  =  [_ z  /  x ]_ B ) )
109rexbidv 2946 . . . 4  |-  ( y  =  B  ->  ( E. z  e.  A  y  =  [_ z  /  x ]_ B  <->  E. z  e.  A  B  =  [_ z  /  x ]_ B ) )
118, 10elab 3224 . . 3  |-  ( B  e.  { y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B }  <->  E. z  e.  A  B  =  [_ z  /  x ]_ B )
127, 11sylibr 215 . 2  |-  ( x  e.  A  ->  B  e.  { y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B } )
13 nfv 1754 . . . 4  |-  F/ z  y  =  B
14 nfcsb1v 3417 . . . . 5  |-  F/_ x [_ z  /  x ]_ B
1514nfeq2 2608 . . . 4  |-  F/ x  y  =  [_ z  /  x ]_ B
162eqeq2d 2443 . . . 4  |-  ( x  =  z  ->  (
y  =  B  <->  y  =  [_ z  /  x ]_ B ) )
1713, 15, 16cbvrex 3059 . . 3  |-  ( E. x  e.  A  y  =  B  <->  E. z  e.  A  y  =  [_ z  /  x ]_ B )
1817abbii 2563 . 2  |-  { y  |  E. x  e.  A  y  =  B }  =  { y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B }
1912, 18syl6eleqr 2528 1  |-  ( x  e.  A  ->  B  e.  { y  |  E. x  e.  A  y  =  B } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437   T. wtru 1438    e. wcel 1870   {cab 2414   E.wrex 2783   _Vcvv 3087   [_csb 3401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ral 2787  df-rex 2788  df-v 3089  df-sbc 3306  df-csb 3402
This theorem is referenced by:  eusvobj2  6298  lss1d  18121  prdsxmetlem  21314  prdsbl  21437  itg2monolem1  22585  heibor1  31846  dihglblem5  34575
  Copyright terms: Public domain W3C validator