MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabgt Structured version   Unicode version

Theorem elabgt 3197
Description: Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg 3201.) (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
elabgt  |-  ( ( A  e.  B  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) ) )  -> 
( A  e.  {
x  |  ph }  <->  ps ) )
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem elabgt
StepHypRef Expression
1 abid 2438 . . . . . . 7  |-  ( x  e.  { x  | 
ph }  <->  ph )
2 eleq1 2521 . . . . . . 7  |-  ( x  =  A  ->  (
x  e.  { x  |  ph }  <->  A  e.  { x  |  ph }
) )
31, 2syl5bbr 259 . . . . . 6  |-  ( x  =  A  ->  ( ph 
<->  A  e.  { x  |  ph } ) )
43bibi1d 319 . . . . 5  |-  ( x  =  A  ->  (
( ph  <->  ps )  <->  ( A  e.  { x  |  ph } 
<->  ps ) ) )
54biimpd 207 . . . 4  |-  ( x  =  A  ->  (
( ph  <->  ps )  ->  ( A  e.  { x  |  ph }  <->  ps )
) )
65a2i 13 . . 3  |-  ( ( x  =  A  -> 
( ph  <->  ps ) )  -> 
( x  =  A  ->  ( A  e. 
{ x  |  ph } 
<->  ps ) ) )
76alimi 1605 . 2  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  A. x
( x  =  A  ->  ( A  e. 
{ x  |  ph } 
<->  ps ) ) )
8 nfcv 2611 . . . 4  |-  F/_ x A
9 nfab1 2613 . . . . . 6  |-  F/_ x { x  |  ph }
109nfel2 2628 . . . . 5  |-  F/ x  A  e.  { x  |  ph }
11 nfv 1674 . . . . 5  |-  F/ x ps
1210, 11nfbi 1869 . . . 4  |-  F/ x
( A  e.  {
x  |  ph }  <->  ps )
13 pm5.5 336 . . . 4  |-  ( x  =  A  ->  (
( x  =  A  ->  ( A  e. 
{ x  |  ph } 
<->  ps ) )  <->  ( A  e.  { x  |  ph } 
<->  ps ) ) )
148, 12, 13spcgf 3145 . . 3  |-  ( A  e.  B  ->  ( A. x ( x  =  A  ->  ( A  e.  { x  |  ph } 
<->  ps ) )  -> 
( A  e.  {
x  |  ph }  <->  ps ) ) )
1514imp 429 . 2  |-  ( ( A  e.  B  /\  A. x ( x  =  A  ->  ( A  e.  { x  |  ph } 
<->  ps ) ) )  ->  ( A  e. 
{ x  |  ph } 
<->  ps ) )
167, 15sylan2 474 1  |-  ( ( A  e.  B  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) ) )  -> 
( A  e.  {
x  |  ph }  <->  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1368    = wceq 1370    e. wcel 1758   {cab 2436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-v 3067
This theorem is referenced by:  elrab3t  3210  abfmpeld  26100  abfmpel  26101  dfrtrcl2  27481
  Copyright terms: Public domain W3C validator