Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabf Structured version   Unicode version

Theorem elabf 3245
 Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
elabf.1
elabf.2
elabf.3
Assertion
Ref Expression
elabf
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem elabf
StepHypRef Expression
1 elabf.2 . 2
2 nfcv 2619 . . 3
3 elabf.1 . . 3
4 elabf.3 . . 3
52, 3, 4elabgf 3244 . 2
61, 5ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wceq 1395  wnf 1617   wcel 1819  cab 2442  cvv 3109 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111 This theorem is referenced by:  elab  3246  dfon2lem1  29432  sdclem2  30440  sdclem1  30441
 Copyright terms: Public domain W3C validator