MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elab4g Structured version   Unicode version

Theorem elab4g 3107
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 17-Oct-2012.)
Hypotheses
Ref Expression
elab4g.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
elab4g.2  |-  B  =  { x  |  ph }
Assertion
Ref Expression
elab4g  |-  ( A  e.  B  <->  ( A  e.  _V  /\  ps )
)
Distinct variable groups:    ps, x    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem elab4g
StepHypRef Expression
1 elex 2979 . 2  |-  ( A  e.  B  ->  A  e.  _V )
2 elab4g.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
3 elab4g.2 . . 3  |-  B  =  { x  |  ph }
42, 3elab2g 3105 . 2  |-  ( A  e.  _V  ->  ( A  e.  B  <->  ps )
)
51, 4biadan2 637 1  |-  ( A  e.  B  <->  ( A  e.  _V  /\  ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   {cab 2427   _Vcvv 2970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-v 2972
This theorem is referenced by:  isprs  15096  ispos  15113  istrkgc  22876  istrkgb  22877  istrkgcb  22878  istrkge  22879  istrkgl  22880  istrkg2d  22881  eulerpartlemt0  26682
  Copyright terms: Public domain W3C validator