Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elab3gf Structured version   Unicode version

Theorem elab3gf 3255
 Description: Membership in a class abstraction, with a weaker antecedent than elabgf 3248. (Contributed by NM, 6-Sep-2011.)
Hypotheses
Ref Expression
elab3gf.1
elab3gf.2
elab3gf.3
Assertion
Ref Expression
elab3gf

Proof of Theorem elab3gf
StepHypRef Expression
1 elab3gf.1 . . . . 5
2 elab3gf.2 . . . . 5
3 elab3gf.3 . . . . 5
41, 2, 3elabgf 3248 . . . 4
54ibi 241 . . 3
6 pm2.21 108 . . 3
75, 6impbid2 204 . 2
81, 2, 3elabgf 3248 . 2
97, 8ja 161 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 184   wceq 1379  wnf 1599   wcel 1767  cab 2452  wnfc 2615 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-v 3115 This theorem is referenced by:  elab3g  3256
 Copyright terms: Public domain W3C validator