Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  el2wlkonotot1 Structured version   Unicode version

Theorem el2wlkonotot1 30336
Description: A walk of length 2 between two vertices (in a graph) as ordered triple. (Contributed by Alexander van der Vekens, 8-Mar-2018.)
Assertion
Ref Expression
el2wlkonotot1  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( R  e.  V  /\  S  e.  V ) )  -> 
( <. A ,  B ,  C >.  e.  ( R ( V 2WalksOnOt  E ) S )  <->  ( A  =  R  /\  C  =  S  /\  <. A ,  B ,  C >.  e.  ( A ( V 2WalksOnOt  E ) C ) ) ) )

Proof of Theorem el2wlkonotot1
Dummy variables  f  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 el2wlkonotot0 30334 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( R  e.  V  /\  S  e.  V ) )  -> 
( <. A ,  B ,  C >.  e.  ( R ( V 2WalksOnOt  E ) S )  <->  ( A  =  R  /\  C  =  S  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) )
2 simpll 753 . . . . . 6  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( R  e.  V  /\  S  e.  V )
)  /\  ( A  =  R  /\  C  =  S ) )  -> 
( V  e.  X  /\  E  e.  Y
) )
3 eleq1 2497 . . . . . . . . . . 11  |-  ( R  =  A  ->  ( R  e.  V  <->  A  e.  V ) )
43eqcoms 2440 . . . . . . . . . 10  |-  ( A  =  R  ->  ( R  e.  V  <->  A  e.  V ) )
5 eleq1 2497 . . . . . . . . . . 11  |-  ( S  =  C  ->  ( S  e.  V  <->  C  e.  V ) )
65eqcoms 2440 . . . . . . . . . 10  |-  ( C  =  S  ->  ( S  e.  V  <->  C  e.  V ) )
74, 6bi2anan9 868 . . . . . . . . 9  |-  ( ( A  =  R  /\  C  =  S )  ->  ( ( R  e.  V  /\  S  e.  V )  <->  ( A  e.  V  /\  C  e.  V ) ) )
87biimpcd 224 . . . . . . . 8  |-  ( ( R  e.  V  /\  S  e.  V )  ->  ( ( A  =  R  /\  C  =  S )  ->  ( A  e.  V  /\  C  e.  V )
) )
98adantl 466 . . . . . . 7  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( R  e.  V  /\  S  e.  V ) )  -> 
( ( A  =  R  /\  C  =  S )  ->  ( A  e.  V  /\  C  e.  V )
) )
109imp 429 . . . . . 6  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( R  e.  V  /\  S  e.  V )
)  /\  ( A  =  R  /\  C  =  S ) )  -> 
( A  e.  V  /\  C  e.  V
) )
11 el2wlkonotot 30335 . . . . . 6  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( <. A ,  B ,  C >.  e.  ( A ( V 2WalksOnOt  E ) C )  <->  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) )
122, 10, 11syl2anc 661 . . . . 5  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( R  e.  V  /\  S  e.  V )
)  /\  ( A  =  R  /\  C  =  S ) )  -> 
( <. A ,  B ,  C >.  e.  ( A ( V 2WalksOnOt  E ) C )  <->  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) )
1312bicomd 201 . . . 4  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( R  e.  V  /\  S  e.  V )
)  /\  ( A  =  R  /\  C  =  S ) )  -> 
( E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) )  <->  <. A ,  B ,  C >.  e.  ( A ( V 2WalksOnOt  E ) C ) ) )
1413pm5.32da 641 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( R  e.  V  /\  S  e.  V ) )  -> 
( ( ( A  =  R  /\  C  =  S )  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0
)  /\  B  =  ( p `  1
)  /\  C  =  ( p `  2
) ) ) )  <-> 
( ( A  =  R  /\  C  =  S )  /\  <. A ,  B ,  C >.  e.  ( A ( V 2WalksOnOt  E ) C ) ) ) )
15 df-3an 967 . . 3  |-  ( ( A  =  R  /\  C  =  S  /\  E. f E. p ( f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  B  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) )  <->  ( ( A  =  R  /\  C  =  S )  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0
)  /\  B  =  ( p `  1
)  /\  C  =  ( p `  2
) ) ) ) )
16 df-3an 967 . . 3  |-  ( ( A  =  R  /\  C  =  S  /\  <. A ,  B ,  C >.  e.  ( A ( V 2WalksOnOt  E ) C ) )  <->  ( ( A  =  R  /\  C  =  S )  /\  <. A ,  B ,  C >.  e.  ( A ( V 2WalksOnOt  E ) C ) ) )
1714, 15, 163bitr4g 288 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( R  e.  V  /\  S  e.  V ) )  -> 
( ( A  =  R  /\  C  =  S  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  <->  ( A  =  R  /\  C  =  S  /\  <. A ,  B ,  C >.  e.  ( A ( V 2WalksOnOt  E ) C ) ) ) )
181, 17bitrd 253 1  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( R  e.  V  /\  S  e.  V ) )  -> 
( <. A ,  B ,  C >.  e.  ( R ( V 2WalksOnOt  E ) S )  <->  ( A  =  R  /\  C  =  S  /\  <. A ,  B ,  C >.  e.  ( A ( V 2WalksOnOt  E ) C ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756   <.cotp 3878   class class class wbr 4285   ` cfv 5411  (class class class)co 6086   0cc0 9274   1c1 9275   2c2 10363   #chash 12095   Walks cwalk 23350   2WalksOnOt c2wlkonot 30317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2418  ax-rep 4396  ax-sep 4406  ax-nul 4414  ax-pow 4463  ax-pr 4524  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2714  df-rex 2715  df-reu 2716  df-rab 2718  df-v 2968  df-sbc 3180  df-csb 3282  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3631  df-if 3785  df-pw 3855  df-sn 3871  df-pr 3873  df-tp 3875  df-op 3877  df-ot 3879  df-uni 4085  df-int 4122  df-iun 4166  df-br 4286  df-opab 4344  df-mpt 4345  df-tr 4379  df-eprel 4624  df-id 4628  df-po 4633  df-so 4634  df-fr 4671  df-we 4673  df-ord 4714  df-on 4715  df-lim 4716  df-suc 4717  df-xp 4838  df-rel 4839  df-cnv 4840  df-co 4841  df-dm 4842  df-rn 4843  df-res 4844  df-ima 4845  df-iota 5374  df-fun 5413  df-fn 5414  df-f 5415  df-f1 5416  df-fo 5417  df-f1o 5418  df-fv 5419  df-riota 6045  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-2 10372  df-n0 10572  df-z 10639  df-uz 10854  df-fz 11430  df-fzo 11541  df-word 12221  df-wlk 23360  df-wlkon 23366  df-2wlkonot 30320
This theorem is referenced by:  usg2spthonot0  30351
  Copyright terms: Public domain W3C validator