MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el2wlkonotlem Structured version   Unicode version

Theorem el2wlkonotlem 25067
Description: Lemma for el2wlkonot 25074. (Contributed by Alexander van der Vekens, 15-Feb-2018.)
Assertion
Ref Expression
el2wlkonotlem  |-  ( ( f ( V Walks  E
) p  /\  ( # `
 f )  =  2 )  ->  (
p `  1 )  e.  V )

Proof of Theorem el2wlkonotlem
StepHypRef Expression
1 2mwlk 24726 . . 3  |-  ( f ( V Walks  E ) p  ->  ( f  e. Word  dom  E  /\  p : ( 0 ... ( # `  f
) ) --> V ) )
2 oveq2 6278 . . . . . . 7  |-  ( (
# `  f )  =  2  ->  (
0 ... ( # `  f
) )  =  ( 0 ... 2 ) )
32feq2d 5700 . . . . . 6  |-  ( (
# `  f )  =  2  ->  (
p : ( 0 ... ( # `  f
) ) --> V  <->  p :
( 0 ... 2
) --> V ) )
4 1ex 9580 . . . . . . . . 9  |-  1  e.  _V
54tpid2 4130 . . . . . . . 8  |-  1  e.  { 0 ,  1 ,  2 }
6 fz0tp 11781 . . . . . . . 8  |-  ( 0 ... 2 )  =  { 0 ,  1 ,  2 }
75, 6eleqtrri 2541 . . . . . . 7  |-  1  e.  ( 0 ... 2
)
8 ffvelrn 6005 . . . . . . 7  |-  ( ( p : ( 0 ... 2 ) --> V  /\  1  e.  ( 0 ... 2 ) )  ->  ( p `  1 )  e.  V )
97, 8mpan2 669 . . . . . 6  |-  ( p : ( 0 ... 2 ) --> V  -> 
( p `  1
)  e.  V )
103, 9syl6bi 228 . . . . 5  |-  ( (
# `  f )  =  2  ->  (
p : ( 0 ... ( # `  f
) ) --> V  -> 
( p `  1
)  e.  V ) )
1110com12 31 . . . 4  |-  ( p : ( 0 ... ( # `  f
) ) --> V  -> 
( ( # `  f
)  =  2  -> 
( p `  1
)  e.  V ) )
1211adantl 464 . . 3  |-  ( ( f  e. Word  dom  E  /\  p : ( 0 ... ( # `  f
) ) --> V )  ->  ( ( # `  f )  =  2  ->  ( p ` 
1 )  e.  V
) )
131, 12syl 16 . 2  |-  ( f ( V Walks  E ) p  ->  ( ( # `
 f )  =  2  ->  ( p `  1 )  e.  V ) )
1413imp 427 1  |-  ( ( f ( V Walks  E
) p  /\  ( # `
 f )  =  2 )  ->  (
p `  1 )  e.  V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   {ctp 4020   class class class wbr 4439   dom cdm 4988   -->wf 5566   ` cfv 5570  (class class class)co 6270   0cc0 9481   1c1 9482   2c2 10581   ...cfz 11675   #chash 12390  Word cword 12521   Walks cwalk 24703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-fzo 11800  df-hash 12391  df-word 12529  df-wlk 24713
This theorem is referenced by:  el2wlkonot  25074  el2spthonot  25075  el2wlkonotot0  25077
  Copyright terms: Public domain W3C validator