MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el2wlkonot Structured version   Unicode version

Theorem el2wlkonot 24996
Description: A walk of length 2 between two vertices (in a graph) as ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.)
Assertion
Ref Expression
el2wlkonot  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( T  e.  ( A ( V 2WalksOnOt  E ) C )  <->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0
)  /\  b  =  ( p `  1
)  /\  C  =  ( p `  2
) ) ) ) ) )
Distinct variable groups:    A, b,
f, p    C, b,
f, p    E, b,
f, p    T, b,
f, p    V, b,
f, p    X, b,
f, p    Y, b,
f, p

Proof of Theorem el2wlkonot
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 2wlkonot 24992 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( A ( V 2WalksOnOt  E ) C )  =  { t  e.  ( ( V  X.  V )  X.  V
)  |  E. f E. p ( f ( A ( V WalkOn  E
) C ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  C ) ) } )
21eleq2d 2527 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( T  e.  ( A ( V 2WalksOnOt  E ) C )  <->  T  e.  { t  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( A ( V WalkOn  E ) C ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  C ) ) } ) )
3 fveq2 5872 . . . . . . . . 9  |-  ( t  =  T  ->  ( 1st `  t )  =  ( 1st `  T
) )
43fveq2d 5876 . . . . . . . 8  |-  ( t  =  T  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  T ) ) )
54eqeq1d 2459 . . . . . . 7  |-  ( t  =  T  ->  (
( 1st `  ( 1st `  t ) )  =  A  <->  ( 1st `  ( 1st `  T
) )  =  A ) )
63fveq2d 5876 . . . . . . . 8  |-  ( t  =  T  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  T ) ) )
76eqeq1d 2459 . . . . . . 7  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  <->  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 ) ) )
8 fveq2 5872 . . . . . . . 8  |-  ( t  =  T  ->  ( 2nd `  t )  =  ( 2nd `  T
) )
98eqeq1d 2459 . . . . . . 7  |-  ( t  =  T  ->  (
( 2nd `  t
)  =  C  <->  ( 2nd `  T )  =  C ) )
105, 7, 93anbi123d 1299 . . . . . 6  |-  ( t  =  T  ->  (
( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  C )  <-> 
( ( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) ) )
11103anbi3d 1305 . . . . 5  |-  ( t  =  T  ->  (
( f ( A ( V WalkOn  E ) C ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  C ) )  <->  ( f ( A ( V WalkOn  E
) C ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) ) ) )
12112exbidv 1717 . . . 4  |-  ( t  =  T  ->  ( E. f E. p ( f ( A ( V WalkOn  E ) C ) p  /\  ( # `
 f )  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  C ) )  <->  E. f E. p
( f ( A ( V WalkOn  E ) C ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) ) ) )
1312elrab 3257 . . 3  |-  ( T  e.  { t  e.  ( ( V  X.  V )  X.  V
)  |  E. f E. p ( f ( A ( V WalkOn  E
) C ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  C ) ) }  <->  ( T  e.  ( ( V  X.  V )  X.  V
)  /\  E. f E. p ( f ( A ( V WalkOn  E
) C ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) ) ) )
142, 13syl6bb 261 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( T  e.  ( A ( V 2WalksOnOt  E ) C )  <->  ( T  e.  ( ( V  X.  V )  X.  V
)  /\  E. f E. p ( f ( A ( V WalkOn  E
) C ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) ) ) ) )
15 simpl 457 . . . . . . . . 9  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( V  e.  X  /\  E  e.  Y
) )
16 vex 3112 . . . . . . . . . . 11  |-  f  e. 
_V
17 vex 3112 . . . . . . . . . . 11  |-  p  e. 
_V
1816, 17pm3.2i 455 . . . . . . . . . 10  |-  ( f  e.  _V  /\  p  e.  _V )
1918a1i 11 . . . . . . . . 9  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( f  e.  _V  /\  p  e.  _V )
)
20 simpr 461 . . . . . . . . 9  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( A  e.  V  /\  C  e.  V
) )
21 iswlkon 24661 . . . . . . . . 9  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( f  e.  _V  /\  p  e. 
_V )  /\  ( A  e.  V  /\  C  e.  V )
)  ->  ( f
( A ( V WalkOn  E ) C ) p  <->  ( f ( V Walks  E ) p  /\  ( p ` 
0 )  =  A  /\  ( p `  ( # `  f ) )  =  C ) ) )
2215, 19, 20, 21syl3anc 1228 . . . . . . . 8  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( f ( A ( V WalkOn  E ) C ) p  <->  ( f
( V Walks  E )
p  /\  ( p `  0 )  =  A  /\  ( p `
 ( # `  f
) )  =  C ) ) )
23223anbi1d 1303 . . . . . . 7  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( ( f ( A ( V WalkOn  E
) C ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) )  <->  ( ( f ( V Walks  E ) p  /\  ( p `
 0 )  =  A  /\  ( p `
 ( # `  f
) )  =  C )  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  T
) )  =  A  /\  ( 2nd `  ( 1st `  T ) )  =  ( p ` 
1 )  /\  ( 2nd `  T )  =  C ) ) ) )
2423anbi2d 703 . . . . . 6  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( ( T  e.  ( ( V  X.  V )  X.  V
)  /\  ( f
( A ( V WalkOn  E ) C ) p  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  T
) )  =  A  /\  ( 2nd `  ( 1st `  T ) )  =  ( p ` 
1 )  /\  ( 2nd `  T )  =  C ) ) )  <-> 
( T  e.  ( ( V  X.  V
)  X.  V )  /\  ( ( f ( V Walks  E ) p  /\  ( p `
 0 )  =  A  /\  ( p `
 ( # `  f
) )  =  C )  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  T
) )  =  A  /\  ( 2nd `  ( 1st `  T ) )  =  ( p ` 
1 )  /\  ( 2nd `  T )  =  C ) ) ) ) )
25 simpl 457 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  V  /\  C  e.  V )  ->  A  e.  V )
2625adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  ->  A  e.  V )
2726adantl 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( f ( V Walks 
E ) p  /\  ( p `  0
)  =  A  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
) )  ->  A  e.  V )
2827adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( f ( V Walks  E ) p  /\  ( p ` 
0 )  =  A  /\  ( p `  ( # `  f ) )  =  C )  /\  ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
) )  /\  ( # `
 f )  =  2 )  ->  A  e.  V )
29 el2wlkonotlem 24989 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f ( V Walks  E
) p  /\  ( # `
 f )  =  2 )  ->  (
p `  1 )  e.  V )
3029ex 434 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f ( V Walks  E ) p  ->  ( ( # `
 f )  =  2  ->  ( p `  1 )  e.  V ) )
31303ad2ant1 1017 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f ( V Walks  E
) p  /\  (
p `  0 )  =  A  /\  (
p `  ( # `  f
) )  =  C )  ->  ( ( # `
 f )  =  2  ->  ( p `  1 )  e.  V ) )
3231adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( f ( V Walks 
E ) p  /\  ( p `  0
)  =  A  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
) )  ->  (
( # `  f )  =  2  ->  (
p `  1 )  e.  V ) )
3332imp 429 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( f ( V Walks  E ) p  /\  ( p ` 
0 )  =  A  /\  ( p `  ( # `  f ) )  =  C )  /\  ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
) )  /\  ( # `
 f )  =  2 )  ->  (
p `  1 )  e.  V )
34 simpr 461 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  V  /\  C  e.  V )  ->  C  e.  V )
3534adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  ->  C  e.  V )
3635adantl 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( f ( V Walks 
E ) p  /\  ( p `  0
)  =  A  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
) )  ->  C  e.  V )
3736adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( f ( V Walks  E ) p  /\  ( p ` 
0 )  =  A  /\  ( p `  ( # `  f ) )  =  C )  /\  ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
) )  /\  ( # `
 f )  =  2 )  ->  C  e.  V )
38 el2xptp0 6843 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  V  /\  ( p `  1
)  e.  V  /\  C  e.  V )  ->  ( ( T  e.  ( ( V  X.  V )  X.  V
)  /\  ( ( 1st `  ( 1st `  T
) )  =  A  /\  ( 2nd `  ( 1st `  T ) )  =  ( p ` 
1 )  /\  ( 2nd `  T )  =  C ) )  <->  T  =  <. A ,  ( p `
 1 ) ,  C >. ) )
3928, 33, 37, 38syl3anc 1228 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( f ( V Walks  E ) p  /\  ( p ` 
0 )  =  A  /\  ( p `  ( # `  f ) )  =  C )  /\  ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
) )  /\  ( # `
 f )  =  2 )  ->  (
( T  e.  ( ( V  X.  V
)  X.  V )  /\  ( ( 1st `  ( 1st `  T
) )  =  A  /\  ( 2nd `  ( 1st `  T ) )  =  ( p ` 
1 )  /\  ( 2nd `  T )  =  C ) )  <->  T  =  <. A ,  ( p `
 1 ) ,  C >. ) )
40 oteq2 4229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( p `  1 )  =  b  ->  <. A , 
( p `  1
) ,  C >.  = 
<. A ,  b ,  C >. )
4140eqcoms 2469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( b  =  ( p ` 
1 )  ->  <. A , 
( p `  1
) ,  C >.  = 
<. A ,  b ,  C >. )
4241eqeq2d 2471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( b  =  ( p ` 
1 )  ->  ( T  =  <. A , 
( p `  1
) ,  C >.  <->  T  =  <. A ,  b ,  C >. )
)
4342biimpcd 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( T  =  <. A ,  ( p `  1 ) ,  C >.  ->  (
b  =  ( p `
 1 )  ->  T  =  <. A , 
b ,  C >. ) )
4443adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( T  =  <. A , 
( p `  1
) ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2 ) )  ->  ( b  =  ( p `  1
)  ->  T  =  <. A ,  b ,  C >. ) )
4544ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( T  = 
<. A ,  ( p `
 1 ) ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2 ) )  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( p `  0
)  =  A )  ->  ( b  =  ( p `  1
)  ->  T  =  <. A ,  b ,  C >. ) )
4645impcom 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( b  =  ( p `
 1 )  /\  ( ( ( T  =  <. A ,  ( p `  1 ) ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2 ) )  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( p `  0
)  =  A ) )  ->  T  =  <. A ,  b ,  C >. )
47 simpl 457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( f ( V Walks  E
) p  /\  ( # `
 f )  =  2 )  ->  f
( V Walks  E )
p )
4847adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( T  =  <. A , 
( p `  1
) ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2 ) )  ->  f ( V Walks 
E ) p )
4948ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( T  = 
<. A ,  ( p `
 1 ) ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2 ) )  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( p `  0
)  =  A )  ->  f ( V Walks 
E ) p )
5049adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( b  =  ( p `
 1 )  /\  ( ( ( T  =  <. A ,  ( p `  1 ) ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2 ) )  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( p `  0
)  =  A ) )  ->  f ( V Walks  E ) p )
51 simpr 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( f ( V Walks  E
) p  /\  ( # `
 f )  =  2 )  ->  ( # `
 f )  =  2 )
5251adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( T  =  <. A , 
( p `  1
) ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2 ) )  ->  ( # `  f
)  =  2 )
5352ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( T  = 
<. A ,  ( p `
 1 ) ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2 ) )  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( p `  0
)  =  A )  ->  ( # `  f
)  =  2 )
5453adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( b  =  ( p `
 1 )  /\  ( ( ( T  =  <. A ,  ( p `  1 ) ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2 ) )  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( p `  0
)  =  A ) )  ->  ( # `  f
)  =  2 )
55 eqcom 2466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( p `  0 )  =  A  <->  A  =  ( p `  0
) )
5655biimpi 194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( p `  0 )  =  A  ->  A  =  ( p ` 
0 ) )
5756adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( T  = 
<. A ,  ( p `
 1 ) ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2 ) )  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( p `  0
)  =  A )  ->  A  =  ( p `  0 ) )
5857adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( b  =  ( p `
 1 )  /\  ( ( ( T  =  <. A ,  ( p `  1 ) ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2 ) )  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( p `  0
)  =  A ) )  ->  A  =  ( p `  0
) )
59 simpl 457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( b  =  ( p `
 1 )  /\  ( ( ( T  =  <. A ,  ( p `  1 ) ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2 ) )  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( p `  0
)  =  A ) )  ->  b  =  ( p `  1
) )
60 fveq2 5872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( (
# `  f )  =  2  ->  (
p `  ( # `  f
) )  =  ( p `  2 ) )
6160eqeq1d 2459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( (
# `  f )  =  2  ->  (
( p `  ( # `
 f ) )  =  C  <->  ( p `  2 )  =  C ) )
62 eqcom 2466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( ( p `  2 )  =  C  <->  C  =  ( p `  2
) )
6362biimpi 194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( p `  2 )  =  C  ->  C  =  ( p ` 
2 ) )
6461, 63syl6bi 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( (
# `  f )  =  2  ->  (
( p `  ( # `
 f ) )  =  C  ->  C  =  ( p ` 
2 ) ) )
6564adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( f ( V Walks  E
) p  /\  ( # `
 f )  =  2 )  ->  (
( p `  ( # `
 f ) )  =  C  ->  C  =  ( p ` 
2 ) ) )
6665adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( T  =  <. A , 
( p `  1
) ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2 ) )  ->  ( ( p `
 ( # `  f
) )  =  C  ->  C  =  ( p `  2 ) ) )
6766imp 429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( T  =  <. A ,  ( p ` 
1 ) ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2 ) )  /\  ( p `
 ( # `  f
) )  =  C )  ->  C  =  ( p `  2
) )
6867adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( T  = 
<. A ,  ( p `
 1 ) ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2 ) )  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( p `  0
)  =  A )  ->  C  =  ( p `  2 ) )
6968adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( b  =  ( p `
 1 )  /\  ( ( ( T  =  <. A ,  ( p `  1 ) ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2 ) )  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( p `  0
)  =  A ) )  ->  C  =  ( p `  2
) )
7058, 59, 693jca 1176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( b  =  ( p `
 1 )  /\  ( ( ( T  =  <. A ,  ( p `  1 ) ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2 ) )  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( p `  0
)  =  A ) )  ->  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) )
7150, 54, 703jca 1176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( b  =  ( p `
 1 )  /\  ( ( ( T  =  <. A ,  ( p `  1 ) ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2 ) )  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( p `  0
)  =  A ) )  ->  ( f
( V Walks  E )
p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )
7246, 71jca 532 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( b  =  ( p `
 1 )  /\  ( ( ( T  =  <. A ,  ( p `  1 ) ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2 ) )  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( p `  0
)  =  A ) )  ->  ( T  =  <. A ,  b ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) ) )
7372ex 434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( b  =  ( p ` 
1 )  ->  (
( ( ( T  =  <. A ,  ( p `  1 ) ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2 ) )  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( p `  0
)  =  A )  ->  ( T  = 
<. A ,  b ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) ) ) )
7473adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2 )  /\  b  =  ( p `  1 ) )  ->  ( ( ( ( T  =  <. A ,  ( p ` 
1 ) ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2 ) )  /\  ( p `
 ( # `  f
) )  =  C )  /\  ( p `
 0 )  =  A )  ->  ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) )
7529, 74rspcimedv 3212 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( f ( V Walks  E
) p  /\  ( # `
 f )  =  2 )  ->  (
( ( ( T  =  <. A ,  ( p `  1 ) ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2 ) )  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( p `  0
)  =  A )  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) )
7675com12 31 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( T  = 
<. A ,  ( p `
 1 ) ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2 ) )  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( p `  0
)  =  A )  ->  ( ( f ( V Walks  E ) p  /\  ( # `  f )  =  2 )  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) ) ) )
7776exp41 610 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( T  =  <. A ,  ( p `  1 ) ,  C >.  ->  (
( f ( V Walks 
E ) p  /\  ( # `  f )  =  2 )  -> 
( ( p `  ( # `  f ) )  =  C  -> 
( ( p ` 
0 )  =  A  ->  ( ( f ( V Walks  E ) p  /\  ( # `  f )  =  2 )  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) ) ) ) ) ) )
7877com15 93 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f ( V Walks  E
) p  /\  ( # `
 f )  =  2 )  ->  (
( f ( V Walks 
E ) p  /\  ( # `  f )  =  2 )  -> 
( ( p `  ( # `  f ) )  =  C  -> 
( ( p ` 
0 )  =  A  ->  ( T  = 
<. A ,  ( p `
 1 ) ,  C >.  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) ) ) ) ) ) )
7978pm2.43i 47 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f ( V Walks  E
) p  /\  ( # `
 f )  =  2 )  ->  (
( p `  ( # `
 f ) )  =  C  ->  (
( p `  0
)  =  A  -> 
( T  =  <. A ,  ( p ` 
1 ) ,  C >.  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) ) ) )
8079ex 434 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f ( V Walks  E ) p  ->  ( ( # `
 f )  =  2  ->  ( (
p `  ( # `  f
) )  =  C  ->  ( ( p `
 0 )  =  A  ->  ( T  =  <. A ,  ( p `  1 ) ,  C >.  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) ) ) ) ) ) )
8180com24 87 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f ( V Walks  E ) p  ->  ( (
p `  0 )  =  A  ->  ( ( p `  ( # `  f ) )  =  C  ->  ( ( # `
 f )  =  2  ->  ( T  =  <. A ,  ( p `  1 ) ,  C >.  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) ) ) ) ) ) )
82813imp 1190 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f ( V Walks  E
) p  /\  (
p `  0 )  =  A  /\  (
p `  ( # `  f
) )  =  C )  ->  ( ( # `
 f )  =  2  ->  ( T  =  <. A ,  ( p `  1 ) ,  C >.  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) ) ) ) )
8382adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( f ( V Walks 
E ) p  /\  ( p `  0
)  =  A  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
) )  ->  (
( # `  f )  =  2  ->  ( T  =  <. A , 
( p `  1
) ,  C >.  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) ) )
8483imp 429 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( f ( V Walks  E ) p  /\  ( p ` 
0 )  =  A  /\  ( p `  ( # `  f ) )  =  C )  /\  ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
) )  /\  ( # `
 f )  =  2 )  ->  ( T  =  <. A , 
( p `  1
) ,  C >.  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) )
8539, 84sylbid 215 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f ( V Walks  E ) p  /\  ( p ` 
0 )  =  A  /\  ( p `  ( # `  f ) )  =  C )  /\  ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
) )  /\  ( # `
 f )  =  2 )  ->  (
( T  e.  ( ( V  X.  V
)  X.  V )  /\  ( ( 1st `  ( 1st `  T
) )  =  A  /\  ( 2nd `  ( 1st `  T ) )  =  ( p ` 
1 )  /\  ( 2nd `  T )  =  C ) )  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) )
8685ex 434 . . . . . . . . . . . . . . . 16  |-  ( ( ( f ( V Walks 
E ) p  /\  ( p `  0
)  =  A  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
) )  ->  (
( # `  f )  =  2  ->  (
( T  e.  ( ( V  X.  V
)  X.  V )  /\  ( ( 1st `  ( 1st `  T
) )  =  A  /\  ( 2nd `  ( 1st `  T ) )  =  ( p ` 
1 )  /\  ( 2nd `  T )  =  C ) )  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) ) )
8786com23 78 . . . . . . . . . . . . . . 15  |-  ( ( ( f ( V Walks 
E ) p  /\  ( p `  0
)  =  A  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
) )  ->  (
( T  e.  ( ( V  X.  V
)  X.  V )  /\  ( ( 1st `  ( 1st `  T
) )  =  A  /\  ( 2nd `  ( 1st `  T ) )  =  ( p ` 
1 )  /\  ( 2nd `  T )  =  C ) )  -> 
( ( # `  f
)  =  2  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) ) )
8887ex 434 . . . . . . . . . . . . . 14  |-  ( ( f ( V Walks  E
) p  /\  (
p `  0 )  =  A  /\  (
p `  ( # `  f
) )  =  C )  ->  ( (
( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( ( T  e.  ( ( V  X.  V )  X.  V
)  /\  ( ( 1st `  ( 1st `  T
) )  =  A  /\  ( 2nd `  ( 1st `  T ) )  =  ( p ` 
1 )  /\  ( 2nd `  T )  =  C ) )  -> 
( ( # `  f
)  =  2  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) ) ) )
8988com4t 85 . . . . . . . . . . . . 13  |-  ( ( T  e.  ( ( V  X.  V )  X.  V )  /\  ( ( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) )  ->  ( ( # `
 f )  =  2  ->  ( (
f ( V Walks  E
) p  /\  (
p `  0 )  =  A  /\  (
p `  ( # `  f
) )  =  C )  ->  ( (
( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) ) ) )
9089ex 434 . . . . . . . . . . . 12  |-  ( T  e.  ( ( V  X.  V )  X.  V )  ->  (
( ( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C )  ->  ( ( # `  f )  =  2  ->  ( ( f ( V Walks  E ) p  /\  ( p `
 0 )  =  A  /\  ( p `
 ( # `  f
) )  =  C )  ->  ( (
( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) ) ) ) )
9190com14 88 . . . . . . . . . . 11  |-  ( ( f ( V Walks  E
) p  /\  (
p `  0 )  =  A  /\  (
p `  ( # `  f
) )  =  C )  ->  ( (
( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C )  ->  ( ( # `  f )  =  2  ->  ( T  e.  ( ( V  X.  V )  X.  V
)  ->  ( (
( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) ) ) ) )
9291com23 78 . . . . . . . . . 10  |-  ( ( f ( V Walks  E
) p  /\  (
p `  0 )  =  A  /\  (
p `  ( # `  f
) )  =  C )  ->  ( ( # `
 f )  =  2  ->  ( (
( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C )  ->  ( T  e.  ( ( V  X.  V )  X.  V
)  ->  ( (
( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) ) ) ) )
93923imp 1190 . . . . . . . . 9  |-  ( ( ( f ( V Walks 
E ) p  /\  ( p `  0
)  =  A  /\  ( p `  ( # `
 f ) )  =  C )  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) )  ->  ( T  e.  ( ( V  X.  V )  X.  V
)  ->  ( (
( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) ) )
9493impcom 430 . . . . . . . 8  |-  ( ( T  e.  ( ( V  X.  V )  X.  V )  /\  ( ( f ( V Walks  E ) p  /\  ( p ` 
0 )  =  A  /\  ( p `  ( # `  f ) )  =  C )  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) ) )  ->  (
( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
)  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) ) ) )
9594com12 31 . . . . . . 7  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( ( T  e.  ( ( V  X.  V )  X.  V
)  /\  ( (
f ( V Walks  E
) p  /\  (
p `  0 )  =  A  /\  (
p `  ( # `  f
) )  =  C )  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  T
) )  =  A  /\  ( 2nd `  ( 1st `  T ) )  =  ( p ` 
1 )  /\  ( 2nd `  T )  =  C ) ) )  ->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) )
9625adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  V  /\  C  e.  V
)  /\  b  e.  V )  ->  A  e.  V )
97 simpr 461 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  V  /\  C  e.  V
)  /\  b  e.  V )  ->  b  e.  V )
9834adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  V  /\  C  e.  V
)  /\  b  e.  V )  ->  C  e.  V )
9996, 97, 983jca 1176 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  V  /\  C  e.  V
)  /\  b  e.  V )  ->  ( A  e.  V  /\  b  e.  V  /\  C  e.  V )
)
100 otel3xp 5044 . . . . . . . . . . . . . . . 16  |-  ( ( T  =  <. A , 
b ,  C >.  /\  ( A  e.  V  /\  b  e.  V  /\  C  e.  V
) )  ->  T  e.  ( ( V  X.  V )  X.  V
) )
10199, 100sylan2 474 . . . . . . . . . . . . . . 15  |-  ( ( T  =  <. A , 
b ,  C >.  /\  ( ( A  e.  V  /\  C  e.  V )  /\  b  e.  V ) )  ->  T  e.  ( ( V  X.  V )  X.  V ) )
102101ex 434 . . . . . . . . . . . . . 14  |-  ( T  =  <. A ,  b ,  C >.  ->  (
( ( A  e.  V  /\  C  e.  V )  /\  b  e.  V )  ->  T  e.  ( ( V  X.  V )  X.  V
) ) )
103102adantr 465 . . . . . . . . . . . . 13  |-  ( ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  ->  (
( ( A  e.  V  /\  C  e.  V )  /\  b  e.  V )  ->  T  e.  ( ( V  X.  V )  X.  V
) ) )
104103com12 31 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  C  e.  V
)  /\  b  e.  V )  ->  (
( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  ->  T  e.  ( ( V  X.  V )  X.  V ) ) )
105104adantll 713 . . . . . . . . . . 11  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  ->  (
( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  ->  T  e.  ( ( V  X.  V )  X.  V ) ) )
106105imp 429 . . . . . . . . . 10  |-  ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  /\  ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) )  ->  T  e.  ( ( V  X.  V )  X.  V ) )
107 id 22 . . . . . . . . . . . . . . 15  |-  ( f ( V Walks  E ) p  ->  f ( V Walks  E ) p )
1081073ad2ant1 1017 . . . . . . . . . . . . . 14  |-  ( ( f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) )  ->  f ( V Walks 
E ) p )
109108adantl 466 . . . . . . . . . . . . 13  |-  ( ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  ->  f
( V Walks  E )
p )
110109adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  /\  ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) )  -> 
f ( V Walks  E
) p )
111 eqcom 2466 . . . . . . . . . . . . . . . . 17  |-  ( A  =  ( p ` 
0 )  <->  ( p `  0 )  =  A )
112111biimpi 194 . . . . . . . . . . . . . . . 16  |-  ( A  =  ( p ` 
0 )  ->  (
p `  0 )  =  A )
1131123ad2ant1 1017 . . . . . . . . . . . . . . 15  |-  ( ( A  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) )  ->  ( p ` 
0 )  =  A )
1141133ad2ant3 1019 . . . . . . . . . . . . . 14  |-  ( ( f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) )  ->  ( p ` 
0 )  =  A )
115114adantl 466 . . . . . . . . . . . . 13  |-  ( ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  ->  (
p `  0 )  =  A )
116115adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  /\  ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) )  -> 
( p `  0
)  =  A )
117 eqcom 2466 . . . . . . . . . . . . . . . . . . 19  |-  ( C  =  ( p ` 
2 )  <->  ( p `  2 )  =  C )
118117biimpi 194 . . . . . . . . . . . . . . . . . 18  |-  ( C  =  ( p ` 
2 )  ->  (
p `  2 )  =  C )
1191183ad2ant3 1019 . . . . . . . . . . . . . . . . 17  |-  ( ( A  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) )  ->  ( p ` 
2 )  =  C )
120119, 61syl5ibr 221 . . . . . . . . . . . . . . . 16  |-  ( (
# `  f )  =  2  ->  (
( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) )  ->  ( p `  ( # `  f
) )  =  C ) )
121120a1i 11 . . . . . . . . . . . . . . 15  |-  ( f ( V Walks  E ) p  ->  ( ( # `
 f )  =  2  ->  ( ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) )  ->  ( p `  ( # `  f ) )  =  C ) ) )
1221213imp 1190 . . . . . . . . . . . . . 14  |-  ( ( f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) )  ->  ( p `  ( # `  f ) )  =  C )
123122adantl 466 . . . . . . . . . . . . 13  |-  ( ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  ->  (
p `  ( # `  f
) )  =  C )
124123adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  /\  ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) )  -> 
( p `  ( # `
 f ) )  =  C )
125110, 116, 1243jca 1176 . . . . . . . . . . 11  |-  ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  /\  ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) )  -> 
( f ( V Walks 
E ) p  /\  ( p `  0
)  =  A  /\  ( p `  ( # `
 f ) )  =  C ) )
126 id 22 . . . . . . . . . . . . . 14  |-  ( (
# `  f )  =  2  ->  ( # `
 f )  =  2 )
1271263ad2ant2 1018 . . . . . . . . . . . . 13  |-  ( ( f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) )  ->  ( # `  f
)  =  2 )
128127adantl 466 . . . . . . . . . . . 12  |-  ( ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  ->  ( # `
 f )  =  2 )
129128adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  /\  ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) )  -> 
( # `  f )  =  2 )
13099adantll 713 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  ->  ( A  e.  V  /\  b  e.  V  /\  C  e.  V )
)
131 oteqimp 6818 . . . . . . . . . . . . . . . . 17  |-  ( T  =  <. A ,  b ,  C >.  ->  (
( A  e.  V  /\  b  e.  V  /\  C  e.  V
)  ->  ( ( 1st `  ( 1st `  T
) )  =  A  /\  ( 2nd `  ( 1st `  T ) )  =  b  /\  ( 2nd `  T )  =  C ) ) )
132130, 131syl5 32 . . . . . . . . . . . . . . . 16  |-  ( T  =  <. A ,  b ,  C >.  ->  (
( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  ->  (
( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  b  /\  ( 2nd `  T
)  =  C ) ) )
133 eqeq2 2472 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  ( p ` 
1 )  ->  (
( 2nd `  ( 1st `  T ) )  =  b  <->  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 ) ) )
1341333anbi2d 1304 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( p ` 
1 )  ->  (
( ( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  b  /\  ( 2nd `  T
)  =  C )  <-> 
( ( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) ) )
135134imbi2d 316 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( p ` 
1 )  ->  (
( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V
) )  /\  b  e.  V )  ->  (
( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  b  /\  ( 2nd `  T
)  =  C ) )  <->  ( ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  /\  b  e.  V )  ->  ( ( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) ) ) )
136132, 135syl5ib 219 . . . . . . . . . . . . . . 15  |-  ( b  =  ( p ` 
1 )  ->  ( T  =  <. A , 
b ,  C >.  -> 
( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V
) )  /\  b  e.  V )  ->  (
( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) ) ) )
1371363ad2ant2 1018 . . . . . . . . . . . . . 14  |-  ( ( A  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) )  ->  ( T  = 
<. A ,  b ,  C >.  ->  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  ->  (
( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) ) ) )
1381373ad2ant3 1019 . . . . . . . . . . . . 13  |-  ( ( f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) )  ->  ( T  = 
<. A ,  b ,  C >.  ->  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  ->  (
( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) ) ) )
139138impcom 430 . . . . . . . . . . . 12  |-  ( ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  ->  (
( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  ->  (
( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) ) )
140139impcom 430 . . . . . . . . . . 11  |-  ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  /\  ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) )  -> 
( ( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) )
141125, 129, 1403jca 1176 . . . . . . . . . 10  |-  ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  /\  ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) )  -> 
( ( f ( V Walks  E ) p  /\  ( p ` 
0 )  =  A  /\  ( p `  ( # `  f ) )  =  C )  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) ) )
142106, 141jca 532 . . . . . . . . 9  |-  ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  /\  ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) )  -> 
( T  e.  ( ( V  X.  V
)  X.  V )  /\  ( ( f ( V Walks  E ) p  /\  ( p `
 0 )  =  A  /\  ( p `
 ( # `  f
) )  =  C )  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  T
) )  =  A  /\  ( 2nd `  ( 1st `  T ) )  =  ( p ` 
1 )  /\  ( 2nd `  T )  =  C ) ) ) )
143142ex 434 . . . . . . . 8  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  C  e.  V )
)  /\  b  e.  V )  ->  (
( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  -> 
( T  e.  ( ( V  X.  V
)  X.  V )  /\  ( ( f ( V Walks  E ) p  /\  ( p `
 0 )  =  A  /\  ( p `
 ( # `  f
) )  =  C )  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  T
) )  =  A  /\  ( 2nd `  ( 1st `  T ) )  =  ( p ` 
1 )  /\  ( 2nd `  T )  =  C ) ) ) ) )
144143rexlimdva 2949 . . . . . . 7  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( E. b  e.  V  ( T  = 
<. A ,  b ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) )  ->  ( T  e.  ( ( V  X.  V )  X.  V
)  /\  ( (
f ( V Walks  E
) p  /\  (
p `  0 )  =  A  /\  (
p `  ( # `  f
) )  =  C )  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  T
) )  =  A  /\  ( 2nd `  ( 1st `  T ) )  =  ( p ` 
1 )  /\  ( 2nd `  T )  =  C ) ) ) ) )
14595, 144impbid 191 . . . . . 6  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( ( T  e.  ( ( V  X.  V )  X.  V
)  /\  ( (
f ( V Walks  E
) p  /\  (
p `  0 )  =  A  /\  (
p `  ( # `  f
) )  =  C )  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  T
) )  =  A  /\  ( 2nd `  ( 1st `  T ) )  =  ( p ` 
1 )  /\  ( 2nd `  T )  =  C ) ) )  <->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) )
14624, 145bitrd 253 . . . . 5  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( ( T  e.  ( ( V  X.  V )  X.  V
)  /\  ( f
( A ( V WalkOn  E ) C ) p  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  T
) )  =  A  /\  ( 2nd `  ( 1st `  T ) )  =  ( p ` 
1 )  /\  ( 2nd `  T )  =  C ) ) )  <->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) )
1471462exbidv 1717 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( E. f E. p ( T  e.  ( ( V  X.  V )  X.  V
)  /\  ( f
( A ( V WalkOn  E ) C ) p  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  T
) )  =  A  /\  ( 2nd `  ( 1st `  T ) )  =  ( p ` 
1 )  /\  ( 2nd `  T )  =  C ) ) )  <->  E. f E. p E. b  e.  V  ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) ) )
148 19.42vv 1778 . . . 4  |-  ( E. f E. p ( T  e.  ( ( V  X.  V )  X.  V )  /\  ( f ( A ( V WalkOn  E ) C ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) ) )  <->  ( T  e.  ( ( V  X.  V )  X.  V
)  /\  E. f E. p ( f ( A ( V WalkOn  E
) C ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) ) ) )
149 rexcom4 3129 . . . . 5  |-  ( E. b  e.  V  E. f E. p ( T  =  <. A ,  b ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) )  <->  E. f E. b  e.  V  E. p
( T  =  <. A ,  b ,  C >.  /\  ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) )
150 rexcom4 3129 . . . . . 6  |-  ( E. b  e.  V  E. p ( T  = 
<. A ,  b ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) )  <->  E. p E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) ) )
151150exbii 1668 . . . . 5  |-  ( E. f E. b  e.  V  E. p ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  <->  E. f E. p E. b  e.  V  ( T  = 
<. A ,  b ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) ) )
152149, 151bitr2i 250 . . . 4  |-  ( E. f E. p E. b  e.  V  ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  <->  E. b  e.  V  E. f E. p ( T  = 
<. A ,  b ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) ) )
153147, 148, 1523bitr3g 287 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( ( T  e.  ( ( V  X.  V )  X.  V
)  /\  E. f E. p ( f ( A ( V WalkOn  E
) C ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) ) )  <->  E. b  e.  V  E. f E. p ( T  = 
<. A ,  b ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) ) ) )
154 19.42vv 1778 . . . 4  |-  ( E. f E. p ( T  =  <. A , 
b ,  C >.  /\  ( f ( V Walks 
E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  <->  ( T  =  <. A ,  b ,  C >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0
)  /\  b  =  ( p `  1
)  /\  C  =  ( p `  2
) ) ) ) )
155154rexbii 2959 . . 3  |-  ( E. b  e.  V  E. f E. p ( T  =  <. A ,  b ,  C >.  /\  (
f ( V Walks  E
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) ) )  <->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) ) )
156153, 155syl6bb 261 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( ( T  e.  ( ( V  X.  V )  X.  V
)  /\  E. f E. p ( f ( A ( V WalkOn  E
) C ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T
) )  =  ( p `  1 )  /\  ( 2nd `  T
)  =  C ) ) )  <->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0
)  /\  b  =  ( p `  1
)  /\  C  =  ( p `  2
) ) ) ) ) )
15714, 156bitrd 253 1  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  C  e.  V ) )  -> 
( T  e.  ( A ( V 2WalksOnOt  E ) C )  <->  E. b  e.  V  ( T  =  <. A ,  b ,  C >.  /\  E. f E. p ( f ( V Walks  E ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0
)  /\  b  =  ( p `  1
)  /\  C  =  ( p `  2
) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395   E.wex 1613    e. wcel 1819   E.wrex 2808   {crab 2811   _Vcvv 3109   <.cotp 4040   class class class wbr 4456    X. cxp 5006   ` cfv 5594  (class class class)co 6296   1stc1st 6797   2ndc2nd 6798   0cc0 9509   1c1 9510   2c2 10606   #chash 12408   Walks cwalk 24625   WalkOn cwlkon 24629   2WalksOnOt c2wlkonot 24982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-ot 4041  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-fzo 11822  df-hash 12409  df-word 12546  df-wlk 24635  df-wlkon 24641  df-2wlkonot 24985
This theorem is referenced by:  el2wlkonotot0  24999  el2wlksot  25007  frg2wot1  25184  frg2woteq  25187
  Copyright terms: Public domain W3C validator