MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eirrlem Unicode version

Theorem eirrlem 12758
Description: Lemma for eirr 12759. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
eirr.1  |-  F  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
eirr.2  |-  ( ph  ->  P  e.  ZZ )
eirr.3  |-  ( ph  ->  Q  e.  NN )
eirr.4  |-  ( ph  ->  _e  =  ( P  /  Q ) )
Assertion
Ref Expression
eirrlem  |-  -.  ph
Distinct variable group:    Q, n
Allowed substitution hints:    ph( n)    P( n)    F( n)

Proof of Theorem eirrlem
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 esum 12638 . . . . . . . . . 10  |-  _e  =  sum_ k  e.  NN0  (
1  /  ( ! `
 k ) )
2 fveq2 5687 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
32oveq2d 6056 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
1  /  ( ! `
 n ) )  =  ( 1  / 
( ! `  k
) ) )
4 eirr.1 . . . . . . . . . . . 12  |-  F  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
5 ovex 6065 . . . . . . . . . . . 12  |-  ( 1  /  ( ! `  k ) )  e. 
_V
63, 4, 5fvmpt 5765 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( 1  /  ( ! `  k )
) )
76sumeq2i 12448 . . . . . . . . . 10  |-  sum_ k  e.  NN0  ( F `  k )  =  sum_ k  e.  NN0  ( 1  /  ( ! `  k ) )
81, 7eqtr4i 2427 . . . . . . . . 9  |-  _e  =  sum_ k  e.  NN0  ( F `  k )
9 nn0uz 10476 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
10 eqid 2404 . . . . . . . . . 10  |-  ( ZZ>= `  ( Q  +  1
) )  =  (
ZZ>= `  ( Q  + 
1 ) )
11 eirr.3 . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  NN )
1211peano2nnd 9973 . . . . . . . . . . 11  |-  ( ph  ->  ( Q  +  1 )  e.  NN )
1312nnnn0d 10230 . . . . . . . . . 10  |-  ( ph  ->  ( Q  +  1 )  e.  NN0 )
14 eqidd 2405 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( F `  k ) )
15 nn0z 10260 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN0  ->  n  e.  ZZ )
16 1exp 11364 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
1715, 16syl 16 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN0  ->  ( 1 ^ n )  =  1 )
1817oveq1d 6055 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN0  ->  ( ( 1 ^ n )  /  ( ! `  n ) )  =  ( 1  /  ( ! `  n )
) )
1918mpteq2ia 4251 . . . . . . . . . . . . . 14  |-  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( 1  / 
( ! `  n
) ) )
204, 19eqtr4i 2427 . . . . . . . . . . . . 13  |-  F  =  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n )
) )
2120eftval 12634 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( ( 1 ^ k )  /  ( ! `  k )
) )
2221adantl 453 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( ( 1 ^ k
)  /  ( ! `
 k ) ) )
23 ax-1cn 9004 . . . . . . . . . . . . 13  |-  1  e.  CC
2423a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  CC )
25 eftcl 12631 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  k  e.  NN0 )  -> 
( ( 1 ^ k )  /  ( ! `  k )
)  e.  CC )
2624, 25sylan 458 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
1 ^ k )  /  ( ! `  k ) )  e.  CC )
2722, 26eqeltrd 2478 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  CC )
2820efcllem 12635 . . . . . . . . . . 11  |-  ( 1  e.  CC  ->  seq  0 (  +  ,  F )  e.  dom  ~~>  )
2924, 28syl 16 . . . . . . . . . 10  |-  ( ph  ->  seq  0 (  +  ,  F )  e. 
dom 
~~>  )
309, 10, 13, 14, 27, 29isumsplit 12575 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  NN0  ( F `  k )  =  ( sum_ k  e.  ( 0 ... (
( Q  +  1 )  -  1 ) ) ( F `  k )  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) ) )
318, 30syl5eq 2448 . . . . . . . 8  |-  ( ph  ->  _e  =  ( sum_ k  e.  ( 0 ... ( ( Q  +  1 )  - 
1 ) ) ( F `  k )  +  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
3211nncnd 9972 . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  CC )
33 pncan 9267 . . . . . . . . . . . 12  |-  ( ( Q  e.  CC  /\  1  e.  CC )  ->  ( ( Q  + 
1 )  -  1 )  =  Q )
3432, 23, 33sylancl 644 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  + 
1 )  -  1 )  =  Q )
3534oveq2d 6056 . . . . . . . . . 10  |-  ( ph  ->  ( 0 ... (
( Q  +  1 )  -  1 ) )  =  ( 0 ... Q ) )
3635sumeq1d 12450 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( ( Q  +  1 )  -  1 ) ) ( F `  k
)  =  sum_ k  e.  ( 0 ... Q
) ( F `  k ) )
3736oveq1d 6055 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( ( Q  +  1 )  -  1 ) ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )  =  (
sum_ k  e.  ( 0 ... Q ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) ) )
3831, 37eqtrd 2436 . . . . . . 7  |-  ( ph  ->  _e  =  ( sum_ k  e.  ( 0 ... Q ) ( F `  k )  +  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
3938oveq1d 6055 . . . . . 6  |-  ( ph  ->  ( _e  -  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  =  ( (
sum_ k  e.  ( 0 ... Q ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )  -  sum_ k  e.  ( 0 ... Q ) ( F `  k ) ) )
40 fzfid 11267 . . . . . . . 8  |-  ( ph  ->  ( 0 ... Q
)  e.  Fin )
41 elfznn0 11039 . . . . . . . . 9  |-  ( k  e.  ( 0 ... Q )  ->  k  e.  NN0 )
4241, 27sylan2 461 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( F `  k )  e.  CC )
4340, 42fsumcl 12482 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 0 ... Q ) ( F `  k
)  e.  CC )
446adantl 453 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( 1  /  ( ! `
 k ) ) )
45 faccl 11531 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
4645adantl 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  NN )
4746nnrpd 10603 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  RR+ )
4847rpreccld 10614 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 1  /  ( ! `  k ) )  e.  RR+ )
4944, 48eqeltrd 2478 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  RR+ )
509, 10, 13, 14, 49, 29isumrpcl 12578 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR+ )
5150rpred 10604 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR )
5251recnd 9070 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  CC )
5343, 52pncan2d 9369 . . . . . 6  |-  ( ph  ->  ( ( sum_ k  e.  ( 0 ... Q
) ( F `  k )  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  -  sum_ k  e.  ( 0 ... Q ) ( F `  k
) )  =  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )
5439, 53eqtrd 2436 . . . . 5  |-  ( ph  ->  ( _e  -  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  =  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )
5554oveq2d 6056 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  (
_e  -  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) )  =  ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
5611nnnn0d 10230 . . . . . . 7  |-  ( ph  ->  Q  e.  NN0 )
57 faccl 11531 . . . . . . 7  |-  ( Q  e.  NN0  ->  ( ! `
 Q )  e.  NN )
5856, 57syl 16 . . . . . 6  |-  ( ph  ->  ( ! `  Q
)  e.  NN )
5958nncnd 9972 . . . . 5  |-  ( ph  ->  ( ! `  Q
)  e.  CC )
60 ere 12646 . . . . . . 7  |-  _e  e.  RR
6160recni 9058 . . . . . 6  |-  _e  e.  CC
6261a1i 11 . . . . 5  |-  ( ph  ->  _e  e.  CC )
6359, 62, 43subdid 9445 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  (
_e  -  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) )  =  ( ( ( ! `  Q )  x.  _e )  -  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) ) ) )
6455, 63eqtr3d 2438 . . 3  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  =  ( ( ( ! `  Q )  x.  _e )  -  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) ) ) )
65 eirr.4 . . . . . . 7  |-  ( ph  ->  _e  =  ( P  /  Q ) )
6665oveq2d 6056 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  x.  _e )  =  ( ( ! `  Q )  x.  ( P  /  Q
) ) )
67 eirr.2 . . . . . . . 8  |-  ( ph  ->  P  e.  ZZ )
6867zcnd 10332 . . . . . . 7  |-  ( ph  ->  P  e.  CC )
6911nnne0d 10000 . . . . . . 7  |-  ( ph  ->  Q  =/=  0 )
7059, 68, 32, 69div12d 9782 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  x.  ( P  /  Q ) )  =  ( P  x.  ( ( ! `  Q )  /  Q
) ) )
7166, 70eqtrd 2436 . . . . 5  |-  ( ph  ->  ( ( ! `  Q )  x.  _e )  =  ( P  x.  ( ( ! `  Q )  /  Q
) ) )
7211nnred 9971 . . . . . . . . 9  |-  ( ph  ->  Q  e.  RR )
7372leidd 9549 . . . . . . . 8  |-  ( ph  ->  Q  <_  Q )
74 facdiv 11533 . . . . . . . 8  |-  ( ( Q  e.  NN0  /\  Q  e.  NN  /\  Q  <_  Q )  ->  (
( ! `  Q
)  /  Q )  e.  NN )
7556, 11, 73, 74syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( ( ! `  Q )  /  Q
)  e.  NN )
7675nnzd 10330 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  /  Q
)  e.  ZZ )
7767, 76zmulcld 10337 . . . . 5  |-  ( ph  ->  ( P  x.  (
( ! `  Q
)  /  Q ) )  e.  ZZ )
7871, 77eqeltrd 2478 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  _e )  e.  ZZ )
7940, 59, 42fsummulc2 12522 . . . . 5  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  =  sum_ k  e.  ( 0 ... Q
) ( ( ! `
 Q )  x.  ( F `  k
) ) )
8041adantl 453 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  k  e.  NN0 )
8180, 6syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( F `  k )  =  ( 1  / 
( ! `  k
) ) )
8281oveq2d 6056 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  =  ( ( ! `
 Q )  x.  ( 1  /  ( ! `  k )
) ) )
8359adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  Q )  e.  CC )
8441, 46sylan2 461 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  k )  e.  NN )
8584nncnd 9972 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  k )  e.  CC )
86 facne0 11532 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ! `
 k )  =/=  0 )
8780, 86syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  k )  =/=  0 )
8883, 85, 87divrecd 9749 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  /  ( ! `
 k ) )  =  ( ( ! `
 Q )  x.  ( 1  /  ( ! `  k )
) ) )
8982, 88eqtr4d 2439 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  =  ( ( ! `
 Q )  / 
( ! `  k
) ) )
90 permnn 11572 . . . . . . . . 9  |-  ( k  e.  ( 0 ... Q )  ->  (
( ! `  Q
)  /  ( ! `
 k ) )  e.  NN )
9190adantl 453 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  /  ( ! `
 k ) )  e.  NN )
9289, 91eqeltrd 2478 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  e.  NN )
9392nnzd 10330 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  e.  ZZ )
9440, 93fsumzcl 12484 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... Q ) ( ( ! `  Q )  x.  ( F `  k )
)  e.  ZZ )
9579, 94eqeltrd 2478 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  e.  ZZ )
9678, 95zsubcld 10336 . . 3  |-  ( ph  ->  ( ( ( ! `
 Q )  x.  _e )  -  (
( ! `  Q
)  x.  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) )  e.  ZZ )
9764, 96eqeltrd 2478 . 2  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  e.  ZZ )
98 0z 10249 . . . 4  |-  0  e.  ZZ
9998a1i 11 . . 3  |-  ( ph  ->  0  e.  ZZ )
10058nnrpd 10603 . . . . 5  |-  ( ph  ->  ( ! `  Q
)  e.  RR+ )
101100, 50rpmulcld 10620 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  e.  RR+ )
102101rpgt0d 10607 . . 3  |-  ( ph  ->  0  <  ( ( ! `  Q )  x.  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
10312peano2nnd 9973 . . . . . . . 8  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  e.  NN )
104103nnred 9971 . . . . . . 7  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  e.  RR )
105 faccl 11531 . . . . . . . . 9  |-  ( ( Q  +  1 )  e.  NN0  ->  ( ! `
 ( Q  + 
1 ) )  e.  NN )
10613, 105syl 16 . . . . . . . 8  |-  ( ph  ->  ( ! `  ( Q  +  1 ) )  e.  NN )
107106, 12nnmulcld 10003 . . . . . . 7  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) )  e.  NN )
108104, 107nndivred 10004 . . . . . 6  |-  ( ph  ->  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) )  e.  RR )
10958nnrecred 10001 . . . . . 6  |-  ( ph  ->  ( 1  /  ( ! `  Q )
)  e.  RR )
110 abs1 12057 . . . . . . . . . . . 12  |-  ( abs `  1 )  =  1
111110oveq1i 6050 . . . . . . . . . . 11  |-  ( ( abs `  1 ) ^ n )  =  ( 1 ^ n
)
112111oveq1i 6050 . . . . . . . . . 10  |-  ( ( ( abs `  1
) ^ n )  /  ( ! `  n ) )  =  ( ( 1 ^ n )  /  ( ! `  n )
)
113112mpteq2i 4252 . . . . . . . . 9  |-  ( n  e.  NN0  |->  ( ( ( abs `  1
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( 1 ^ n )  / 
( ! `  n
) ) )
11420, 113eqtr4i 2427 . . . . . . . 8  |-  F  =  ( n  e.  NN0  |->  ( ( ( abs `  1 ) ^
n )  /  ( ! `  n )
) )
115 eqid 2404 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( ( ( abs `  1
) ^ ( Q  +  1 ) )  /  ( ! `  ( Q  +  1
) ) )  x.  ( ( 1  / 
( ( Q  + 
1 )  +  1 ) ) ^ n
) ) )  =  ( n  e.  NN0  |->  ( ( ( ( abs `  1 ) ^ ( Q  + 
1 ) )  / 
( ! `  ( Q  +  1 ) ) )  x.  (
( 1  /  (
( Q  +  1 )  +  1 ) ) ^ n ) ) )
116 1le1 9606 . . . . . . . . . 10  |-  1  <_  1
117110, 116eqbrtri 4191 . . . . . . . . 9  |-  ( abs `  1 )  <_ 
1
118117a1i 11 . . . . . . . 8  |-  ( ph  ->  ( abs `  1
)  <_  1 )
11920, 114, 115, 12, 24, 118eftlub 12665 . . . . . . 7  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  <_  ( ( ( abs `  1 ) ^ ( Q  + 
1 ) )  x.  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) ) ) )
12050rprege0d 10611 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR  /\  0  <_ 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
121 absid 12056 . . . . . . . 8  |-  ( (
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR  /\  0  <_ 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  ->  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  =  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )
122120, 121syl 16 . . . . . . 7  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  =  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )
123110oveq1i 6050 . . . . . . . . . 10  |-  ( ( abs `  1 ) ^ ( Q  + 
1 ) )  =  ( 1 ^ ( Q  +  1 ) )
12412nnzd 10330 . . . . . . . . . . 11  |-  ( ph  ->  ( Q  +  1 )  e.  ZZ )
125 1exp 11364 . . . . . . . . . . 11  |-  ( ( Q  +  1 )  e.  ZZ  ->  (
1 ^ ( Q  +  1 ) )  =  1 )
126124, 125syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ^ ( Q  +  1 ) )  =  1 )
127123, 126syl5eq 2448 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  1
) ^ ( Q  +  1 ) )  =  1 )
128127oveq1d 6055 . . . . . . . 8  |-  ( ph  ->  ( ( ( abs `  1 ) ^
( Q  +  1 ) )  x.  (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  =  ( 1  x.  ( ( ( Q  +  1 )  +  1 )  / 
( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) ) ) ) )
129108recnd 9070 . . . . . . . . 9  |-  ( ph  ->  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) )  e.  CC )
130129mulid2d 9062 . . . . . . . 8  |-  ( ph  ->  ( 1  x.  (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  =  ( ( ( Q  +  1 )  +  1 )  /  ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) ) ) )
131128, 130eqtrd 2436 . . . . . . 7  |-  ( ph  ->  ( ( ( abs `  1 ) ^
( Q  +  1 ) )  x.  (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  =  ( ( ( Q  +  1 )  +  1 )  /  ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) ) ) )
132119, 122, 1313brtr3d 4201 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  <_  ( ( ( Q  +  1 )  +  1 )  / 
( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) ) ) )
13312nnred 9971 . . . . . . . . . 10  |-  ( ph  ->  ( Q  +  1 )  e.  RR )
134133, 133readdcld 9071 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  +  ( Q  +  1 ) )  e.  RR )
135133, 133remulcld 9072 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  x.  ( Q  +  1 ) )  e.  RR )
136 1re 9046 . . . . . . . . . . 11  |-  1  e.  RR
137136a1i 11 . . . . . . . . . 10  |-  ( ph  ->  1  e.  RR )
13811nnge1d 9998 . . . . . . . . . . 11  |-  ( ph  ->  1  <_  Q )
139 1nn 9967 . . . . . . . . . . . 12  |-  1  e.  NN
140 nnleltp1 10285 . . . . . . . . . . . 12  |-  ( ( 1  e.  NN  /\  Q  e.  NN )  ->  ( 1  <_  Q  <->  1  <  ( Q  + 
1 ) ) )
141139, 11, 140sylancr 645 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  <_  Q  <->  1  <  ( Q  + 
1 ) ) )
142138, 141mpbid 202 . . . . . . . . . 10  |-  ( ph  ->  1  <  ( Q  +  1 ) )
143137, 133, 133, 142ltadd2dd 9185 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  <  ( ( Q  +  1 )  +  ( Q  + 
1 ) ) )
14412nncnd 9972 . . . . . . . . . . 11  |-  ( ph  ->  ( Q  +  1 )  e.  CC )
1451442timesd 10166 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( Q  +  1 ) )  =  ( ( Q  +  1 )  +  ( Q  + 
1 ) ) )
146 df-2 10014 . . . . . . . . . . . 12  |-  2  =  ( 1  +  1 )
147137, 72, 137, 138leadd1dd 9596 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  +  1 )  <_  ( Q  +  1 ) )
148146, 147syl5eqbr 4205 . . . . . . . . . . 11  |-  ( ph  ->  2  <_  ( Q  +  1 ) )
149 2re 10025 . . . . . . . . . . . . 13  |-  2  e.  RR
150149a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  2  e.  RR )
15112nngt0d 9999 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  ( Q  +  1 ) )
152 lemul1 9818 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  ( Q  +  1
)  e.  RR  /\  ( ( Q  + 
1 )  e.  RR  /\  0  <  ( Q  +  1 ) ) )  ->  ( 2  <_  ( Q  + 
1 )  <->  ( 2  x.  ( Q  + 
1 ) )  <_ 
( ( Q  + 
1 )  x.  ( Q  +  1 ) ) ) )
153150, 133, 133, 151, 152syl112anc 1188 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  <_  ( Q  +  1 )  <-> 
( 2  x.  ( Q  +  1 ) )  <_  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) ) )
154148, 153mpbid 202 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( Q  +  1 ) )  <_  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) )
155145, 154eqbrtrrd 4194 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  +  ( Q  +  1 ) )  <_  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) )
156104, 134, 135, 143, 155ltletrd 9186 . . . . . . . 8  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  <  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) )
157 facp1 11526 . . . . . . . . . . . . 13  |-  ( Q  e.  NN0  ->  ( ! `
 ( Q  + 
1 ) )  =  ( ( ! `  Q )  x.  ( Q  +  1 ) ) )
15856, 157syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( ! `  ( Q  +  1 ) )  =  ( ( ! `  Q )  x.  ( Q  + 
1 ) ) )
159158oveq1d 6055 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  /  ( ! `  Q )
)  =  ( ( ( ! `  Q
)  x.  ( Q  +  1 ) )  /  ( ! `  Q ) ) )
160106nncnd 9972 . . . . . . . . . . . 12  |-  ( ph  ->  ( ! `  ( Q  +  1 ) )  e.  CC )
16158nnne0d 10000 . . . . . . . . . . . 12  |-  ( ph  ->  ( ! `  Q
)  =/=  0 )
162160, 59, 161divrecd 9749 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  /  ( ! `  Q )
)  =  ( ( ! `  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
163144, 59, 161divcan3d 9751 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ! `
 Q )  x.  ( Q  +  1 ) )  /  ( ! `  Q )
)  =  ( Q  +  1 ) )
164159, 162, 1633eqtr3rd 2445 . . . . . . . . . 10  |-  ( ph  ->  ( Q  +  1 )  =  ( ( ! `  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
165164oveq1d 6055 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  x.  ( Q  +  1 ) )  =  ( ( ( ! `  ( Q  +  1 ) )  x.  ( 1  /  ( ! `  Q ) ) )  x.  ( Q  + 
1 ) ) )
166109recnd 9070 . . . . . . . . . 10  |-  ( ph  ->  ( 1  /  ( ! `  Q )
)  e.  CC )
167160, 166, 144mul32d 9232 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ! `
 ( Q  + 
1 ) )  x.  ( 1  /  ( ! `  Q )
) )  x.  ( Q  +  1 ) )  =  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
168165, 167eqtrd 2436 . . . . . . . 8  |-  ( ph  ->  ( ( Q  + 
1 )  x.  ( Q  +  1 ) )  =  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
169156, 168breqtrd 4196 . . . . . . 7  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  <  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
170107nnred 9971 . . . . . . . 8  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) )  e.  RR )
171107nngt0d 9999 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) )
172 ltdivmul 9838 . . . . . . . 8  |-  ( ( ( ( Q  + 
1 )  +  1 )  e.  RR  /\  ( 1  /  ( ! `  Q )
)  e.  RR  /\  ( ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) )  e.  RR  /\  0  <  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  ->  ( (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) )  <  ( 1  / 
( ! `  Q
) )  <->  ( ( Q  +  1 )  +  1 )  < 
( ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) )  x.  (
1  /  ( ! `
 Q ) ) ) ) )
173104, 109, 170, 171, 172syl112anc 1188 . . . . . . 7  |-  ( ph  ->  ( ( ( ( Q  +  1 )  +  1 )  / 
( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) ) )  <  (
1  /  ( ! `
 Q ) )  <-> 
( ( Q  + 
1 )  +  1 )  <  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) ) )
174169, 173mpbird 224 . . . . . 6  |-  ( ph  ->  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) )  <  ( 1  /  ( ! `  Q ) ) )
17551, 108, 109, 132, 174lelttrd 9184 . . . . 5  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  <  ( 1  / 
( ! `  Q
) ) )
17651, 137, 100ltmuldiv2d 10648 . . . . 5  |-  ( ph  ->  ( ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  <  1  <->  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k )  < 
( 1  /  ( ! `  Q )
) ) )
177175, 176mpbird 224 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  <  1 )
178 0p1e1 10049 . . . 4  |-  ( 0  +  1 )  =  1
179177, 178syl6breqr 4212 . . 3  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  <  ( 0  +  1 ) )
180 btwnnz 10302 . . 3  |-  ( ( 0  e.  ZZ  /\  0  <  ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  /\  ( ( ! `  Q )  x.  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  <  ( 0  +  1 ) )  ->  -.  ( ( ! `  Q )  x.  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  e.  ZZ )
18199, 102, 179, 180syl3anc 1184 . 2  |-  ( ph  ->  -.  ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  e.  ZZ )
18297, 181pm2.65i 167 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172    e. cmpt 4226   dom cdm 4837   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   NNcn 9956   2c2 10005   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444   RR+crp 10568   ...cfz 10999    seq cseq 11278   ^cexp 11337   !cfa 11521   abscabs 11994    ~~> cli 12233   sum_csu 12434   _eceu 12620
This theorem is referenced by:  eirr  12759
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-ico 10878  df-fz 11000  df-fzo 11091  df-fl 11157  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-e 12626
  Copyright terms: Public domain W3C validator