MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eirrlem Structured version   Visualization version   Unicode version

Theorem eirrlem 14333
Description: Lemma for eirr 14334. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
eirr.1  |-  F  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
eirr.2  |-  ( ph  ->  P  e.  ZZ )
eirr.3  |-  ( ph  ->  Q  e.  NN )
eirr.4  |-  ( ph  ->  _e  =  ( P  /  Q ) )
Assertion
Ref Expression
eirrlem  |-  -.  ph
Distinct variable group:    Q, n
Allowed substitution hints:    ph( n)    P( n)    F( n)

Proof of Theorem eirrlem
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 esum 14212 . . . . . . . . . 10  |-  _e  =  sum_ k  e.  NN0  (
1  /  ( ! `
 k ) )
2 fveq2 5879 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
32oveq2d 6324 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
1  /  ( ! `
 n ) )  =  ( 1  / 
( ! `  k
) ) )
4 eirr.1 . . . . . . . . . . . 12  |-  F  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
5 ovex 6336 . . . . . . . . . . . 12  |-  ( 1  /  ( ! `  k ) )  e. 
_V
63, 4, 5fvmpt 5963 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( 1  /  ( ! `  k )
) )
76sumeq2i 13842 . . . . . . . . . 10  |-  sum_ k  e.  NN0  ( F `  k )  =  sum_ k  e.  NN0  ( 1  /  ( ! `  k ) )
81, 7eqtr4i 2496 . . . . . . . . 9  |-  _e  =  sum_ k  e.  NN0  ( F `  k )
9 nn0uz 11217 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
10 eqid 2471 . . . . . . . . . 10  |-  ( ZZ>= `  ( Q  +  1
) )  =  (
ZZ>= `  ( Q  + 
1 ) )
11 eirr.3 . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  NN )
1211peano2nnd 10648 . . . . . . . . . . 11  |-  ( ph  ->  ( Q  +  1 )  e.  NN )
1312nnnn0d 10949 . . . . . . . . . 10  |-  ( ph  ->  ( Q  +  1 )  e.  NN0 )
14 eqidd 2472 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( F `  k ) )
15 nn0z 10984 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN0  ->  n  e.  ZZ )
16 1exp 12339 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
1715, 16syl 17 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN0  ->  ( 1 ^ n )  =  1 )
1817oveq1d 6323 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN0  ->  ( ( 1 ^ n )  /  ( ! `  n ) )  =  ( 1  /  ( ! `  n )
) )
1918mpteq2ia 4478 . . . . . . . . . . . . . 14  |-  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( 1  / 
( ! `  n
) ) )
204, 19eqtr4i 2496 . . . . . . . . . . . . 13  |-  F  =  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n )
) )
2120eftval 14208 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( ( 1 ^ k )  /  ( ! `  k )
) )
2221adantl 473 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( ( 1 ^ k
)  /  ( ! `
 k ) ) )
23 ax-1cn 9615 . . . . . . . . . . . . 13  |-  1  e.  CC
2423a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  CC )
25 eftcl 14205 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  k  e.  NN0 )  -> 
( ( 1 ^ k )  /  ( ! `  k )
)  e.  CC )
2624, 25sylan 479 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
1 ^ k )  /  ( ! `  k ) )  e.  CC )
2722, 26eqeltrd 2549 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  CC )
2820efcllem 14209 . . . . . . . . . . 11  |-  ( 1  e.  CC  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )
2924, 28syl 17 . . . . . . . . . 10  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
309, 10, 13, 14, 27, 29isumsplit 13975 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  NN0  ( F `  k )  =  ( sum_ k  e.  ( 0 ... (
( Q  +  1 )  -  1 ) ) ( F `  k )  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) ) )
318, 30syl5eq 2517 . . . . . . . 8  |-  ( ph  ->  _e  =  ( sum_ k  e.  ( 0 ... ( ( Q  +  1 )  - 
1 ) ) ( F `  k )  +  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
3211nncnd 10647 . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  CC )
33 pncan 9901 . . . . . . . . . . . 12  |-  ( ( Q  e.  CC  /\  1  e.  CC )  ->  ( ( Q  + 
1 )  -  1 )  =  Q )
3432, 23, 33sylancl 675 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  + 
1 )  -  1 )  =  Q )
3534oveq2d 6324 . . . . . . . . . 10  |-  ( ph  ->  ( 0 ... (
( Q  +  1 )  -  1 ) )  =  ( 0 ... Q ) )
3635sumeq1d 13844 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( ( Q  +  1 )  -  1 ) ) ( F `  k
)  =  sum_ k  e.  ( 0 ... Q
) ( F `  k ) )
3736oveq1d 6323 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( ( Q  +  1 )  -  1 ) ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )  =  (
sum_ k  e.  ( 0 ... Q ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) ) )
3831, 37eqtrd 2505 . . . . . . 7  |-  ( ph  ->  _e  =  ( sum_ k  e.  ( 0 ... Q ) ( F `  k )  +  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
3938oveq1d 6323 . . . . . 6  |-  ( ph  ->  ( _e  -  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  =  ( (
sum_ k  e.  ( 0 ... Q ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )  -  sum_ k  e.  ( 0 ... Q ) ( F `  k ) ) )
40 fzfid 12224 . . . . . . . 8  |-  ( ph  ->  ( 0 ... Q
)  e.  Fin )
41 elfznn0 11913 . . . . . . . . 9  |-  ( k  e.  ( 0 ... Q )  ->  k  e.  NN0 )
4241, 27sylan2 482 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( F `  k )  e.  CC )
4340, 42fsumcl 13876 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 0 ... Q ) ( F `  k
)  e.  CC )
446adantl 473 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( 1  /  ( ! `
 k ) ) )
45 faccl 12507 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
4645adantl 473 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  NN )
4746nnrpd 11362 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  RR+ )
4847rpreccld 11374 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 1  /  ( ! `  k ) )  e.  RR+ )
4944, 48eqeltrd 2549 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  RR+ )
509, 10, 13, 14, 49, 29isumrpcl 13978 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR+ )
5150rpred 11364 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR )
5251recnd 9687 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  CC )
5343, 52pncan2d 10007 . . . . . 6  |-  ( ph  ->  ( ( sum_ k  e.  ( 0 ... Q
) ( F `  k )  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  -  sum_ k  e.  ( 0 ... Q ) ( F `  k
) )  =  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )
5439, 53eqtrd 2505 . . . . 5  |-  ( ph  ->  ( _e  -  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  =  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )
5554oveq2d 6324 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  (
_e  -  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) )  =  ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
5611nnnn0d 10949 . . . . . . 7  |-  ( ph  ->  Q  e.  NN0 )
57 faccl 12507 . . . . . . 7  |-  ( Q  e.  NN0  ->  ( ! `
 Q )  e.  NN )
5856, 57syl 17 . . . . . 6  |-  ( ph  ->  ( ! `  Q
)  e.  NN )
5958nncnd 10647 . . . . 5  |-  ( ph  ->  ( ! `  Q
)  e.  CC )
60 ere 14220 . . . . . . 7  |-  _e  e.  RR
6160recni 9673 . . . . . 6  |-  _e  e.  CC
6261a1i 11 . . . . 5  |-  ( ph  ->  _e  e.  CC )
6359, 62, 43subdid 10095 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  (
_e  -  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) )  =  ( ( ( ! `  Q )  x.  _e )  -  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) ) ) )
6455, 63eqtr3d 2507 . . 3  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  =  ( ( ( ! `  Q )  x.  _e )  -  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) ) ) )
65 eirr.4 . . . . . . 7  |-  ( ph  ->  _e  =  ( P  /  Q ) )
6665oveq2d 6324 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  x.  _e )  =  ( ( ! `  Q )  x.  ( P  /  Q
) ) )
67 eirr.2 . . . . . . . 8  |-  ( ph  ->  P  e.  ZZ )
6867zcnd 11064 . . . . . . 7  |-  ( ph  ->  P  e.  CC )
6911nnne0d 10676 . . . . . . 7  |-  ( ph  ->  Q  =/=  0 )
7059, 68, 32, 69div12d 10441 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  x.  ( P  /  Q ) )  =  ( P  x.  ( ( ! `  Q )  /  Q
) ) )
7166, 70eqtrd 2505 . . . . 5  |-  ( ph  ->  ( ( ! `  Q )  x.  _e )  =  ( P  x.  ( ( ! `  Q )  /  Q
) ) )
7211nnred 10646 . . . . . . . . 9  |-  ( ph  ->  Q  e.  RR )
7372leidd 10201 . . . . . . . 8  |-  ( ph  ->  Q  <_  Q )
74 facdiv 12510 . . . . . . . 8  |-  ( ( Q  e.  NN0  /\  Q  e.  NN  /\  Q  <_  Q )  ->  (
( ! `  Q
)  /  Q )  e.  NN )
7556, 11, 73, 74syl3anc 1292 . . . . . . 7  |-  ( ph  ->  ( ( ! `  Q )  /  Q
)  e.  NN )
7675nnzd 11062 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  /  Q
)  e.  ZZ )
7767, 76zmulcld 11069 . . . . 5  |-  ( ph  ->  ( P  x.  (
( ! `  Q
)  /  Q ) )  e.  ZZ )
7871, 77eqeltrd 2549 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  _e )  e.  ZZ )
7940, 59, 42fsummulc2 13922 . . . . 5  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  =  sum_ k  e.  ( 0 ... Q
) ( ( ! `
 Q )  x.  ( F `  k
) ) )
8041adantl 473 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  k  e.  NN0 )
8180, 6syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( F `  k )  =  ( 1  / 
( ! `  k
) ) )
8281oveq2d 6324 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  =  ( ( ! `
 Q )  x.  ( 1  /  ( ! `  k )
) ) )
8359adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  Q )  e.  CC )
8441, 46sylan2 482 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  k )  e.  NN )
8584nncnd 10647 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  k )  e.  CC )
86 facne0 12509 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ! `
 k )  =/=  0 )
8780, 86syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  k )  =/=  0 )
8883, 85, 87divrecd 10408 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  /  ( ! `
 k ) )  =  ( ( ! `
 Q )  x.  ( 1  /  ( ! `  k )
) ) )
8982, 88eqtr4d 2508 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  =  ( ( ! `
 Q )  / 
( ! `  k
) ) )
90 permnn 12549 . . . . . . . . 9  |-  ( k  e.  ( 0 ... Q )  ->  (
( ! `  Q
)  /  ( ! `
 k ) )  e.  NN )
9190adantl 473 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  /  ( ! `
 k ) )  e.  NN )
9289, 91eqeltrd 2549 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  e.  NN )
9392nnzd 11062 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  e.  ZZ )
9440, 93fsumzcl 13878 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... Q ) ( ( ! `  Q )  x.  ( F `  k )
)  e.  ZZ )
9579, 94eqeltrd 2549 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  e.  ZZ )
9678, 95zsubcld 11068 . . 3  |-  ( ph  ->  ( ( ( ! `
 Q )  x.  _e )  -  (
( ! `  Q
)  x.  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) )  e.  ZZ )
9764, 96eqeltrd 2549 . 2  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  e.  ZZ )
98 0zd 10973 . . 3  |-  ( ph  ->  0  e.  ZZ )
9958nnrpd 11362 . . . . 5  |-  ( ph  ->  ( ! `  Q
)  e.  RR+ )
10099, 50rpmulcld 11380 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  e.  RR+ )
101100rpgt0d 11367 . . 3  |-  ( ph  ->  0  <  ( ( ! `  Q )  x.  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
10212peano2nnd 10648 . . . . . . . 8  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  e.  NN )
103102nnred 10646 . . . . . . 7  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  e.  RR )
104 faccl 12507 . . . . . . . . 9  |-  ( ( Q  +  1 )  e.  NN0  ->  ( ! `
 ( Q  + 
1 ) )  e.  NN )
10513, 104syl 17 . . . . . . . 8  |-  ( ph  ->  ( ! `  ( Q  +  1 ) )  e.  NN )
106105, 12nnmulcld 10679 . . . . . . 7  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) )  e.  NN )
107103, 106nndivred 10680 . . . . . 6  |-  ( ph  ->  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) )  e.  RR )
10858nnrecred 10677 . . . . . 6  |-  ( ph  ->  ( 1  /  ( ! `  Q )
)  e.  RR )
109 abs1 13437 . . . . . . . . . . . 12  |-  ( abs `  1 )  =  1
110109oveq1i 6318 . . . . . . . . . . 11  |-  ( ( abs `  1 ) ^ n )  =  ( 1 ^ n
)
111110oveq1i 6318 . . . . . . . . . 10  |-  ( ( ( abs `  1
) ^ n )  /  ( ! `  n ) )  =  ( ( 1 ^ n )  /  ( ! `  n )
)
112111mpteq2i 4479 . . . . . . . . 9  |-  ( n  e.  NN0  |->  ( ( ( abs `  1
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( 1 ^ n )  / 
( ! `  n
) ) )
11320, 112eqtr4i 2496 . . . . . . . 8  |-  F  =  ( n  e.  NN0  |->  ( ( ( abs `  1 ) ^
n )  /  ( ! `  n )
) )
114 eqid 2471 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( ( ( abs `  1
) ^ ( Q  +  1 ) )  /  ( ! `  ( Q  +  1
) ) )  x.  ( ( 1  / 
( ( Q  + 
1 )  +  1 ) ) ^ n
) ) )  =  ( n  e.  NN0  |->  ( ( ( ( abs `  1 ) ^ ( Q  + 
1 ) )  / 
( ! `  ( Q  +  1 ) ) )  x.  (
( 1  /  (
( Q  +  1 )  +  1 ) ) ^ n ) ) )
115 1le1 10262 . . . . . . . . . 10  |-  1  <_  1
116109, 115eqbrtri 4415 . . . . . . . . 9  |-  ( abs `  1 )  <_ 
1
117116a1i 11 . . . . . . . 8  |-  ( ph  ->  ( abs `  1
)  <_  1 )
11820, 113, 114, 12, 24, 117eftlub 14240 . . . . . . 7  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  <_  ( ( ( abs `  1 ) ^ ( Q  + 
1 ) )  x.  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) ) ) )
11950rprege0d 11371 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR  /\  0  <_ 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
120 absid 13436 . . . . . . . 8  |-  ( (
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR  /\  0  <_ 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  ->  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  =  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )
121119, 120syl 17 . . . . . . 7  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  =  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )
122109oveq1i 6318 . . . . . . . . . 10  |-  ( ( abs `  1 ) ^ ( Q  + 
1 ) )  =  ( 1 ^ ( Q  +  1 ) )
12312nnzd 11062 . . . . . . . . . . 11  |-  ( ph  ->  ( Q  +  1 )  e.  ZZ )
124 1exp 12339 . . . . . . . . . . 11  |-  ( ( Q  +  1 )  e.  ZZ  ->  (
1 ^ ( Q  +  1 ) )  =  1 )
125123, 124syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ^ ( Q  +  1 ) )  =  1 )
126122, 125syl5eq 2517 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  1
) ^ ( Q  +  1 ) )  =  1 )
127126oveq1d 6323 . . . . . . . 8  |-  ( ph  ->  ( ( ( abs `  1 ) ^
( Q  +  1 ) )  x.  (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  =  ( 1  x.  ( ( ( Q  +  1 )  +  1 )  / 
( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) ) ) ) )
128107recnd 9687 . . . . . . . . 9  |-  ( ph  ->  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) )  e.  CC )
129128mulid2d 9679 . . . . . . . 8  |-  ( ph  ->  ( 1  x.  (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  =  ( ( ( Q  +  1 )  +  1 )  /  ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) ) ) )
130127, 129eqtrd 2505 . . . . . . 7  |-  ( ph  ->  ( ( ( abs `  1 ) ^
( Q  +  1 ) )  x.  (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  =  ( ( ( Q  +  1 )  +  1 )  /  ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) ) ) )
131118, 121, 1303brtr3d 4425 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  <_  ( ( ( Q  +  1 )  +  1 )  / 
( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) ) ) )
13212nnred 10646 . . . . . . . . . 10  |-  ( ph  ->  ( Q  +  1 )  e.  RR )
133132, 132readdcld 9688 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  +  ( Q  +  1 ) )  e.  RR )
134132, 132remulcld 9689 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  x.  ( Q  +  1 ) )  e.  RR )
135 1red 9676 . . . . . . . . . 10  |-  ( ph  ->  1  e.  RR )
13611nnge1d 10674 . . . . . . . . . . 11  |-  ( ph  ->  1  <_  Q )
137 1nn 10642 . . . . . . . . . . . 12  |-  1  e.  NN
138 nnleltp1 11015 . . . . . . . . . . . 12  |-  ( ( 1  e.  NN  /\  Q  e.  NN )  ->  ( 1  <_  Q  <->  1  <  ( Q  + 
1 ) ) )
139137, 11, 138sylancr 676 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  <_  Q  <->  1  <  ( Q  + 
1 ) ) )
140136, 139mpbid 215 . . . . . . . . . 10  |-  ( ph  ->  1  <  ( Q  +  1 ) )
141135, 132, 132, 140ltadd2dd 9811 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  <  ( ( Q  +  1 )  +  ( Q  + 
1 ) ) )
14212nncnd 10647 . . . . . . . . . . 11  |-  ( ph  ->  ( Q  +  1 )  e.  CC )
1431422timesd 10878 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( Q  +  1 ) )  =  ( ( Q  +  1 )  +  ( Q  + 
1 ) ) )
144 df-2 10690 . . . . . . . . . . . 12  |-  2  =  ( 1  +  1 )
145135, 72, 135, 136leadd1dd 10248 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  +  1 )  <_  ( Q  +  1 ) )
146144, 145syl5eqbr 4429 . . . . . . . . . . 11  |-  ( ph  ->  2  <_  ( Q  +  1 ) )
147 2re 10701 . . . . . . . . . . . . 13  |-  2  e.  RR
148147a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  2  e.  RR )
14912nngt0d 10675 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  ( Q  +  1 ) )
150 lemul1 10479 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  ( Q  +  1
)  e.  RR  /\  ( ( Q  + 
1 )  e.  RR  /\  0  <  ( Q  +  1 ) ) )  ->  ( 2  <_  ( Q  + 
1 )  <->  ( 2  x.  ( Q  + 
1 ) )  <_ 
( ( Q  + 
1 )  x.  ( Q  +  1 ) ) ) )
151148, 132, 132, 149, 150syl112anc 1296 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  <_  ( Q  +  1 )  <-> 
( 2  x.  ( Q  +  1 ) )  <_  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) ) )
152146, 151mpbid 215 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( Q  +  1 ) )  <_  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) )
153143, 152eqbrtrrd 4418 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  +  ( Q  +  1 ) )  <_  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) )
154103, 133, 134, 141, 153ltletrd 9812 . . . . . . . 8  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  <  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) )
155 facp1 12502 . . . . . . . . . . . . 13  |-  ( Q  e.  NN0  ->  ( ! `
 ( Q  + 
1 ) )  =  ( ( ! `  Q )  x.  ( Q  +  1 ) ) )
15656, 155syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( ! `  ( Q  +  1 ) )  =  ( ( ! `  Q )  x.  ( Q  + 
1 ) ) )
157156oveq1d 6323 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  /  ( ! `  Q )
)  =  ( ( ( ! `  Q
)  x.  ( Q  +  1 ) )  /  ( ! `  Q ) ) )
158105nncnd 10647 . . . . . . . . . . . 12  |-  ( ph  ->  ( ! `  ( Q  +  1 ) )  e.  CC )
15958nnne0d 10676 . . . . . . . . . . . 12  |-  ( ph  ->  ( ! `  Q
)  =/=  0 )
160158, 59, 159divrecd 10408 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  /  ( ! `  Q )
)  =  ( ( ! `  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
161142, 59, 159divcan3d 10410 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ! `
 Q )  x.  ( Q  +  1 ) )  /  ( ! `  Q )
)  =  ( Q  +  1 ) )
162157, 160, 1613eqtr3rd 2514 . . . . . . . . . 10  |-  ( ph  ->  ( Q  +  1 )  =  ( ( ! `  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
163162oveq1d 6323 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  x.  ( Q  +  1 ) )  =  ( ( ( ! `  ( Q  +  1 ) )  x.  ( 1  /  ( ! `  Q ) ) )  x.  ( Q  + 
1 ) ) )
164108recnd 9687 . . . . . . . . . 10  |-  ( ph  ->  ( 1  /  ( ! `  Q )
)  e.  CC )
165158, 164, 142mul32d 9861 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ! `
 ( Q  + 
1 ) )  x.  ( 1  /  ( ! `  Q )
) )  x.  ( Q  +  1 ) )  =  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
166163, 165eqtrd 2505 . . . . . . . 8  |-  ( ph  ->  ( ( Q  + 
1 )  x.  ( Q  +  1 ) )  =  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
167154, 166breqtrd 4420 . . . . . . 7  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  <  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
168106nnred 10646 . . . . . . . 8  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) )  e.  RR )
169106nngt0d 10675 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) )
170 ltdivmul 10502 . . . . . . . 8  |-  ( ( ( ( Q  + 
1 )  +  1 )  e.  RR  /\  ( 1  /  ( ! `  Q )
)  e.  RR  /\  ( ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) )  e.  RR  /\  0  <  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  ->  ( (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) )  <  ( 1  / 
( ! `  Q
) )  <->  ( ( Q  +  1 )  +  1 )  < 
( ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) )  x.  (
1  /  ( ! `
 Q ) ) ) ) )
171103, 108, 168, 169, 170syl112anc 1296 . . . . . . 7  |-  ( ph  ->  ( ( ( ( Q  +  1 )  +  1 )  / 
( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) ) )  <  (
1  /  ( ! `
 Q ) )  <-> 
( ( Q  + 
1 )  +  1 )  <  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) ) )
172167, 171mpbird 240 . . . . . 6  |-  ( ph  ->  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) )  <  ( 1  /  ( ! `  Q ) ) )
17351, 107, 108, 131, 172lelttrd 9810 . . . . 5  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  <  ( 1  / 
( ! `  Q
) ) )
17451, 135, 99ltmuldiv2d 11409 . . . . 5  |-  ( ph  ->  ( ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  <  1  <->  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k )  < 
( 1  /  ( ! `  Q )
) ) )
175173, 174mpbird 240 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  <  1 )
176 0p1e1 10743 . . . 4  |-  ( 0  +  1 )  =  1
177175, 176syl6breqr 4436 . . 3  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  <  ( 0  +  1 ) )
178 btwnnz 11035 . . 3  |-  ( ( 0  e.  ZZ  /\  0  <  ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  /\  ( ( ! `  Q )  x.  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  <  ( 0  +  1 ) )  ->  -.  ( ( ! `  Q )  x.  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  e.  ZZ )
17998, 101, 177, 178syl3anc 1292 . 2  |-  ( ph  ->  -.  ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  e.  ZZ )
18097, 179pm2.65i 178 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   class class class wbr 4395    |-> cmpt 4454   dom cdm 4839   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   NNcn 10631   2c2 10681   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   RR+crp 11325   ...cfz 11810    seqcseq 12251   ^cexp 12310   !cfa 12497   abscabs 13374    ~~> cli 13625   sum_csu 13829   _eceu 14192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-ico 11666  df-fz 11811  df-fzo 11943  df-fl 12061  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-e 14199
This theorem is referenced by:  eirr  14334
  Copyright terms: Public domain W3C validator