MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ege2le3 Structured version   Visualization version   Unicode version

Theorem ege2le3 14221
Description: Lemma for egt2lt3 14335. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
erelem1.1  |-  F  =  ( n  e.  NN  |->  ( 2  x.  (
( 1  /  2
) ^ n ) ) )
erelem1.2  |-  G  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
Assertion
Ref Expression
ege2le3  |-  ( 2  <_  _e  /\  _e  <_  3 )

Proof of Theorem ege2le3
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11217 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
2 0nn0 10908 . . . . . 6  |-  0  e.  NN0
3 1e0p1 11102 . . . . . 6  |-  1  =  ( 0  +  1 )
4 0z 10972 . . . . . . 7  |-  0  e.  ZZ
5 fveq2 5879 . . . . . . . . . . . 12  |-  ( n  =  0  ->  ( ! `  n )  =  ( ! ` 
0 ) )
6 fac0 12500 . . . . . . . . . . . 12  |-  ( ! `
 0 )  =  1
75, 6syl6eq 2521 . . . . . . . . . . 11  |-  ( n  =  0  ->  ( ! `  n )  =  1 )
87oveq2d 6324 . . . . . . . . . 10  |-  ( n  =  0  ->  (
1  /  ( ! `
 n ) )  =  ( 1  / 
1 ) )
9 ax-1cn 9615 . . . . . . . . . . 11  |-  1  e.  CC
109div1i 10357 . . . . . . . . . 10  |-  ( 1  /  1 )  =  1
118, 10syl6eq 2521 . . . . . . . . 9  |-  ( n  =  0  ->  (
1  /  ( ! `
 n ) )  =  1 )
12 erelem1.2 . . . . . . . . 9  |-  G  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
13 1ex 9656 . . . . . . . . 9  |-  1  e.  _V
1411, 12, 13fvmpt 5963 . . . . . . . 8  |-  ( 0  e.  NN0  ->  ( G `
 0 )  =  1 )
152, 14mp1i 13 . . . . . . 7  |-  ( T. 
->  ( G `  0
)  =  1 )
164, 15seq1i 12265 . . . . . 6  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  0 )  =  1 )
17 1nn0 10909 . . . . . . 7  |-  1  e.  NN0
18 fveq2 5879 . . . . . . . . . . 11  |-  ( n  =  1  ->  ( ! `  n )  =  ( ! ` 
1 ) )
19 fac1 12501 . . . . . . . . . . 11  |-  ( ! `
 1 )  =  1
2018, 19syl6eq 2521 . . . . . . . . . 10  |-  ( n  =  1  ->  ( ! `  n )  =  1 )
2120oveq2d 6324 . . . . . . . . 9  |-  ( n  =  1  ->  (
1  /  ( ! `
 n ) )  =  ( 1  / 
1 ) )
2221, 10syl6eq 2521 . . . . . . . 8  |-  ( n  =  1  ->  (
1  /  ( ! `
 n ) )  =  1 )
2322, 12, 13fvmpt 5963 . . . . . . 7  |-  ( 1  e.  NN0  ->  ( G `
 1 )  =  1 )
2417, 23mp1i 13 . . . . . 6  |-  ( T. 
->  ( G `  1
)  =  1 )
251, 2, 3, 16, 24seqp1i 12267 . . . . 5  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  1 )  =  ( 1  +  1 ) )
26 df-2 10690 . . . . 5  |-  2  =  ( 1  +  1 )
2725, 26syl6eqr 2523 . . . 4  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  1 )  =  2 )
2817a1i 11 . . . . 5  |-  ( T. 
->  1  e.  NN0 )
29 nn0z 10984 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  n  e.  ZZ )
30 1exp 12339 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
3129, 30syl 17 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( 1 ^ n )  =  1 )
3231oveq1d 6323 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( ( 1 ^ n )  /  ( ! `  n ) )  =  ( 1  /  ( ! `  n )
) )
3332mpteq2ia 4478 . . . . . . . . 9  |-  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( 1  / 
( ! `  n
) ) )
3412, 33eqtr4i 2496 . . . . . . . 8  |-  G  =  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n )
) )
3534efcvg 14216 . . . . . . 7  |-  ( 1  e.  CC  ->  seq 0 (  +  ,  G )  ~~>  ( exp `  1 ) )
369, 35mp1i 13 . . . . . 6  |-  ( T. 
->  seq 0 (  +  ,  G )  ~~>  ( exp `  1 ) )
37 df-e 14199 . . . . . 6  |-  _e  =  ( exp `  1 )
3836, 37syl6breqr 4436 . . . . 5  |-  ( T. 
->  seq 0 (  +  ,  G )  ~~>  _e )
39 fveq2 5879 . . . . . . . . 9  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
4039oveq2d 6324 . . . . . . . 8  |-  ( n  =  k  ->  (
1  /  ( ! `
 n ) )  =  ( 1  / 
( ! `  k
) ) )
41 ovex 6336 . . . . . . . 8  |-  ( 1  /  ( ! `  k ) )  e. 
_V
4240, 12, 41fvmpt 5963 . . . . . . 7  |-  ( k  e.  NN0  ->  ( G `
 k )  =  ( 1  /  ( ! `  k )
) )
4342adantl 473 . . . . . 6  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( G `  k )  =  ( 1  / 
( ! `  k
) ) )
44 faccl 12507 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
4544adantl 473 . . . . . . 7  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( ! `  k )  e.  NN )
4645nnrecred 10677 . . . . . 6  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
1  /  ( ! `
 k ) )  e.  RR )
4743, 46eqeltrd 2549 . . . . 5  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( G `  k )  e.  RR )
4845nnred 10646 . . . . . . 7  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( ! `  k )  e.  RR )
4945nngt0d 10675 . . . . . . 7  |-  ( ( T.  /\  k  e. 
NN0 )  ->  0  <  ( ! `  k
) )
50 1re 9660 . . . . . . . 8  |-  1  e.  RR
51 0le1 10158 . . . . . . . 8  |-  0  <_  1
52 divge0 10496 . . . . . . . 8  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( ( ! `
 k )  e.  RR  /\  0  < 
( ! `  k
) ) )  -> 
0  <_  ( 1  /  ( ! `  k ) ) )
5350, 51, 52mpanl12 696 . . . . . . 7  |-  ( ( ( ! `  k
)  e.  RR  /\  0  <  ( ! `  k ) )  -> 
0  <_  ( 1  /  ( ! `  k ) ) )
5448, 49, 53syl2anc 673 . . . . . 6  |-  ( ( T.  /\  k  e. 
NN0 )  ->  0  <_  ( 1  /  ( ! `  k )
) )
5554, 43breqtrrd 4422 . . . . 5  |-  ( ( T.  /\  k  e. 
NN0 )  ->  0  <_  ( G `  k
) )
561, 28, 38, 47, 55climserle 13803 . . . 4  |-  ( T. 
->  (  seq 0
(  +  ,  G
) `  1 )  <_  _e )
5727, 56eqbrtrrd 4418 . . 3  |-  ( T. 
->  2  <_  _e )
5857trud 1461 . 2  |-  2  <_  _e
59 nnuz 11218 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
60 1zzd 10992 . . . . . 6  |-  ( T. 
->  1  e.  ZZ )
612a1i 11 . . . . . . . 8  |-  ( T. 
->  0  e.  NN0 )
6247recnd 9687 . . . . . . . 8  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( G `  k )  e.  CC )
631, 61, 62, 38clim2ser 13795 . . . . . . 7  |-  ( T. 
->  seq ( 0  +  1 ) (  +  ,  G )  ~~>  ( _e 
-  (  seq 0
(  +  ,  G
) `  0 )
) )
64 0p1e1 10743 . . . . . . . 8  |-  ( 0  +  1 )  =  1
65 seqeq1 12254 . . . . . . . 8  |-  ( ( 0  +  1 )  =  1  ->  seq ( 0  +  1 ) (  +  ,  G )  =  seq 1 (  +  ,  G ) )
6664, 65ax-mp 5 . . . . . . 7  |-  seq (
0  +  1 ) (  +  ,  G
)  =  seq 1
(  +  ,  G
)
6716trud 1461 . . . . . . . 8  |-  (  seq 0 (  +  ,  G ) `  0
)  =  1
6867oveq2i 6319 . . . . . . 7  |-  ( _e 
-  (  seq 0
(  +  ,  G
) `  0 )
)  =  ( _e 
-  1 )
6963, 66, 683brtr3g 4427 . . . . . 6  |-  ( T. 
->  seq 1 (  +  ,  G )  ~~>  ( _e 
-  1 ) )
70 2cnd 10704 . . . . . . . 8  |-  ( T. 
->  2  e.  CC )
71 oveq2 6316 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
( 1  /  2
) ^ n )  =  ( ( 1  /  2 ) ^
k ) )
72 eqid 2471 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) )
73 ovex 6336 . . . . . . . . . . . . 13  |-  ( ( 1  /  2 ) ^ k )  e. 
_V
7471, 72, 73fvmpt 5963 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 k )  =  ( ( 1  / 
2 ) ^ k
) )
7574adantl 473 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  k
)  =  ( ( 1  /  2 ) ^ k ) )
76 halfre 10851 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  e.  RR
77 simpr 468 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e. 
NN0 )  ->  k  e.  NN0 )
78 reexpcl 12327 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  / 
2 ) ^ k
)  e.  RR )
7976, 77, 78sylancr 676 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 1  /  2
) ^ k )  e.  RR )
8079recnd 9687 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 1  /  2
) ^ k )  e.  CC )
8175, 80eqeltrd 2549 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  k
)  e.  CC )
82 1lt2 10799 . . . . . . . . . . . . . 14  |-  1  <  2
83 2re 10701 . . . . . . . . . . . . . . 15  |-  2  e.  RR
84 0le2 10722 . . . . . . . . . . . . . . 15  |-  0  <_  2
85 absid 13436 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  RR  /\  0  <_  2 )  -> 
( abs `  2
)  =  2 )
8683, 84, 85mp2an 686 . . . . . . . . . . . . . 14  |-  ( abs `  2 )  =  2
8782, 86breqtrri 4421 . . . . . . . . . . . . 13  |-  1  <  ( abs `  2
)
8887a1i 11 . . . . . . . . . . . 12  |-  ( T. 
->  1  <  ( abs `  2 ) )
8970, 88, 75georeclim 14005 . . . . . . . . . . 11  |-  ( T. 
->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) )  ~~>  ( 2  /  (
2  -  1 ) ) )
90 2m1e1 10746 . . . . . . . . . . . . 13  |-  ( 2  -  1 )  =  1
9190oveq2i 6319 . . . . . . . . . . . 12  |-  ( 2  /  ( 2  -  1 ) )  =  ( 2  /  1
)
92 2cn 10702 . . . . . . . . . . . . 13  |-  2  e.  CC
9392div1i 10357 . . . . . . . . . . . 12  |-  ( 2  /  1 )  =  2
9491, 93eqtri 2493 . . . . . . . . . . 11  |-  ( 2  /  ( 2  -  1 ) )  =  2
9589, 94syl6breq 4435 . . . . . . . . . 10  |-  ( T. 
->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) )  ~~>  2 )
961, 61, 81, 95clim2ser 13795 . . . . . . . . 9  |-  ( T. 
->  seq ( 0  +  1 ) (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) )  ~~>  ( 2  -  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) ) ` 
0 ) ) )
97 seqeq1 12254 . . . . . . . . . 10  |-  ( ( 0  +  1 )  =  1  ->  seq ( 0  +  1 ) (  +  , 
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) )  =  seq 1 (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) ) )
9864, 97ax-mp 5 . . . . . . . . 9  |-  seq (
0  +  1 ) (  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) )  =  seq 1
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) )
99 oveq2 6316 . . . . . . . . . . . . . . . . 17  |-  ( n  =  0  ->  (
( 1  /  2
) ^ n )  =  ( ( 1  /  2 ) ^
0 ) )
100 ovex 6336 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  /  2 ) ^ 0 )  e. 
_V
10199, 72, 100fvmpt 5963 . . . . . . . . . . . . . . . 16  |-  ( 0  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 0 )  =  ( ( 1  / 
2 ) ^ 0 ) )
1022, 101ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 0 )  =  ( ( 1  / 
2 ) ^ 0 )
103 halfcn 10852 . . . . . . . . . . . . . . . 16  |-  ( 1  /  2 )  e.  CC
104 exp0 12314 . . . . . . . . . . . . . . . 16  |-  ( ( 1  /  2 )  e.  CC  ->  (
( 1  /  2
) ^ 0 )  =  1 )
105103, 104ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( ( 1  /  2 ) ^ 0 )  =  1
106102, 105eqtri 2493 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 0 )  =  1
107106a1i 11 . . . . . . . . . . . . 13  |-  ( T. 
->  ( ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) ` 
0 )  =  1 )
1084, 107seq1i 12265 . . . . . . . . . . . 12  |-  ( T. 
->  (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) ) `  0 )  =  1 )
109108trud 1461 . . . . . . . . . . 11  |-  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) ) ` 
0 )  =  1
110109oveq2i 6319 . . . . . . . . . 10  |-  ( 2  -  (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) ) `  0 ) )  =  ( 2  -  1 )
111110, 90eqtri 2493 . . . . . . . . 9  |-  ( 2  -  (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) ) `  0 ) )  =  1
11296, 98, 1113brtr3g 4427 . . . . . . . 8  |-  ( T. 
->  seq 1 (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) )  ~~>  1 )
113 nnnn0 10900 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  e.  NN0 )
114113, 81sylan2 482 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  k
)  e.  CC )
11571oveq2d 6324 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
2  x.  ( ( 1  /  2 ) ^ n ) )  =  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
116 erelem1.1 . . . . . . . . . . 11  |-  F  =  ( n  e.  NN  |->  ( 2  x.  (
( 1  /  2
) ^ n ) ) )
117 ovex 6336 . . . . . . . . . . 11  |-  ( 2  x.  ( ( 1  /  2 ) ^
k ) )  e. 
_V
118115, 116, 117fvmpt 5963 . . . . . . . . . 10  |-  ( k  e.  NN  ->  ( F `  k )  =  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
119118adantl 473 . . . . . . . . 9  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  =  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
120113, 75sylan2 482 . . . . . . . . . 10  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  k
)  =  ( ( 1  /  2 ) ^ k ) )
121120oveq2d 6324 . . . . . . . . 9  |-  ( ( T.  /\  k  e.  NN )  ->  (
2  x.  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 k ) )  =  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
122119, 121eqtr4d 2508 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  =  ( 2  x.  ( ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) ) `  k ) ) )
12359, 60, 70, 112, 114, 122isermulc2 13798 . . . . . . 7  |-  ( T. 
->  seq 1 (  +  ,  F )  ~~>  ( 2  x.  1 ) )
124 2t1e2 10781 . . . . . . 7  |-  ( 2  x.  1 )  =  2
125123, 124syl6breq 4435 . . . . . 6  |-  ( T. 
->  seq 1 (  +  ,  F )  ~~>  2 )
126113, 47sylan2 482 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  e.  RR )
127 remulcl 9642 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( ( 1  / 
2 ) ^ k
)  e.  RR )  ->  ( 2  x.  ( ( 1  / 
2 ) ^ k
) )  e.  RR )
12883, 79, 127sylancr 676 . . . . . . . 8  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  e.  RR )
129113, 128sylan2 482 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  e.  RR )
130119, 129eqeltrd 2549 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  ( F `  k )  e.  RR )
131 faclbnd2 12514 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( 2 ^ k )  /  2 )  <_ 
( ! `  k
) )
132131adantl 473 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 2 ^ k
)  /  2 )  <_  ( ! `  k ) )
133 2nn 10790 . . . . . . . . . . . . . 14  |-  2  e.  NN
134 nnexpcl 12323 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
135133, 77, 134sylancr 676 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2 ^ k )  e.  NN )
136135nnrpd 11362 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2 ^ k )  e.  RR+ )
137136rphalfcld 11376 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 2 ^ k
)  /  2 )  e.  RR+ )
13845nnrpd 11362 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( ! `  k )  e.  RR+ )
139137, 138lerecd 11383 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( ( 2 ^ k )  /  2
)  <_  ( ! `  k )  <->  ( 1  /  ( ! `  k ) )  <_ 
( 1  /  (
( 2 ^ k
)  /  2 ) ) ) )
140132, 139mpbid 215 . . . . . . . . 9  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
1  /  ( ! `
 k ) )  <_  ( 1  / 
( ( 2 ^ k )  /  2
) ) )
141 2cnd 10704 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  2  e.  CC )
142135nncnd 10647 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2 ^ k )  e.  CC )
143135nnne0d 10676 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2 ^ k )  =/=  0 )
144141, 142, 143divrecd 10408 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2  /  ( 2 ^ k ) )  =  ( 2  x.  ( 1  /  (
2 ^ k ) ) ) )
145 2ne0 10724 . . . . . . . . . . . 12  |-  2  =/=  0
146 recdiv 10335 . . . . . . . . . . . 12  |-  ( ( ( ( 2 ^ k )  e.  CC  /\  ( 2 ^ k
)  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  -> 
( 1  /  (
( 2 ^ k
)  /  2 ) )  =  ( 2  /  ( 2 ^ k ) ) )
14792, 145, 146mpanr12 699 . . . . . . . . . . 11  |-  ( ( ( 2 ^ k
)  e.  CC  /\  ( 2 ^ k
)  =/=  0 )  ->  ( 1  / 
( ( 2 ^ k )  /  2
) )  =  ( 2  /  ( 2 ^ k ) ) )
148142, 143, 147syl2anc 673 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
1  /  ( ( 2 ^ k )  /  2 ) )  =  ( 2  / 
( 2 ^ k
) ) )
149145a1i 11 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e. 
NN0 )  ->  2  =/=  0 )
150 nn0z 10984 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  ZZ )
151150adantl 473 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e. 
NN0 )  ->  k  e.  ZZ )
152141, 149, 151exprecd 12462 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( 1  /  2
) ^ k )  =  ( 1  / 
( 2 ^ k
) ) )
153152oveq2d 6324 . . . . . . . . . 10  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  =  ( 2  x.  ( 1  /  (
2 ^ k ) ) ) )
154144, 148, 1533eqtr4rd 2516 . . . . . . . . 9  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
2  x.  ( ( 1  /  2 ) ^ k ) )  =  ( 1  / 
( ( 2 ^ k )  /  2
) ) )
155140, 154breqtrrd 4422 . . . . . . . 8  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
1  /  ( ! `
 k ) )  <_  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
156113, 155sylan2 482 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  /  ( ! `
 k ) )  <_  ( 2  x.  ( ( 1  / 
2 ) ^ k
) ) )
157113, 43sylan2 482 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  =  ( 1  / 
( ! `  k
) ) )
158156, 157, 1193brtr4d 4426 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  <_  ( F `  k
) )
15959, 60, 69, 125, 126, 130, 158iserle 13800 . . . . 5  |-  ( T. 
->  ( _e  -  1 )  <_  2 )
160159trud 1461 . . . 4  |-  ( _e 
-  1 )  <_ 
2
161 ere 14220 . . . . 5  |-  _e  e.  RR
162161, 50, 83lesubaddi 10193 . . . 4  |-  ( ( _e  -  1 )  <_  2  <->  _e  <_  ( 2  +  1 ) )
163160, 162mpbi 213 . . 3  |-  _e  <_  ( 2  +  1 )
164 df-3 10691 . . 3  |-  3  =  ( 2  +  1 )
165163, 164breqtrri 4421 . 2  |-  _e  <_  3
16658, 165pm3.2i 462 1  |-  ( 2  <_  _e  /\  _e  <_  3 )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 376    = wceq 1452   T. wtru 1453    e. wcel 1904    =/= wne 2641   class class class wbr 4395    |-> cmpt 4454   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   NNcn 10631   2c2 10681   3c3 10682   NN0cn0 10893   ZZcz 10961    seqcseq 12251   ^cexp 12310   !cfa 12497   abscabs 13374    ~~> cli 13625   expce 14191   _eceu 14192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-ico 11666  df-fz 11811  df-fzo 11943  df-fl 12061  df-seq 12252  df-exp 12311  df-fac 12498  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-e 14199
This theorem is referenced by:  egt2lt3  14335
  Copyright terms: Public domain W3C validator