MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efrirr Structured version   Unicode version

Theorem efrirr 4860
Description: Irreflexivity of the epsilon relation: a class founded by epsilon is not a member of itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
efrirr  |-  (  _E  Fr  A  ->  -.  A  e.  A )

Proof of Theorem efrirr
StepHypRef Expression
1 frirr 4856 . . 3  |-  ( (  _E  Fr  A  /\  A  e.  A )  ->  -.  A  _E  A
)
2 epelg 4792 . . . 4  |-  ( A  e.  A  ->  ( A  _E  A  <->  A  e.  A ) )
32adantl 466 . . 3  |-  ( (  _E  Fr  A  /\  A  e.  A )  ->  ( A  _E  A  <->  A  e.  A ) )
41, 3mtbid 300 . 2  |-  ( (  _E  Fr  A  /\  A  e.  A )  ->  -.  A  e.  A
)
54pm2.01da 442 1  |-  (  _E  Fr  A  ->  -.  A  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1767   class class class wbr 4447    _E cep 4789    Fr wfr 4835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-eprel 4791  df-fr 4838
This theorem is referenced by:  tz7.2  4863  ordirr  4896
  Copyright terms: Public domain W3C validator