MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efrirr Structured version   Visualization version   Unicode version

Theorem efrirr 4820
Description: Irreflexivity of the epsilon relation: a class founded by epsilon is not a member of itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
efrirr  |-  (  _E  Fr  A  ->  -.  A  e.  A )

Proof of Theorem efrirr
StepHypRef Expression
1 frirr 4816 . . 3  |-  ( (  _E  Fr  A  /\  A  e.  A )  ->  -.  A  _E  A
)
2 epelg 4751 . . . 4  |-  ( A  e.  A  ->  ( A  _E  A  <->  A  e.  A ) )
32adantl 473 . . 3  |-  ( (  _E  Fr  A  /\  A  e.  A )  ->  ( A  _E  A  <->  A  e.  A ) )
41, 3mtbid 307 . 2  |-  ( (  _E  Fr  A  /\  A  e.  A )  ->  -.  A  e.  A
)
54pm2.01da 449 1  |-  (  _E  Fr  A  ->  -.  A  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    e. wcel 1904   class class class wbr 4395    _E cep 4748    Fr wfr 4795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-br 4396  df-opab 4455  df-eprel 4750  df-fr 4798
This theorem is referenced by:  tz7.2  4823  ordirr  5448
  Copyright terms: Public domain W3C validator