MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efopnlem2 Structured version   Visualization version   Unicode version

Theorem efopnlem2 23681
Description: Lemma for efopn 23682. (Contributed by Mario Carneiro, 2-May-2015.)
Hypothesis
Ref Expression
efopn.j  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
efopnlem2  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  ( exp " ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )  e.  J
)

Proof of Theorem efopnlem2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 logf1o 23593 . . . . . . . 8  |-  log :
( CC  \  {
0 } ) -1-1-onto-> ran  log
2 f1orn 5838 . . . . . . . . 9  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log 
<->  ( log  Fn  ( CC  \  { 0 } )  /\  Fun  `' log ) )
32simprbi 471 . . . . . . . 8  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log  ->  Fun  `' log )
4 funcnvres 5662 . . . . . . . 8  |-  ( Fun  `' log  ->  `' ( log  |`  ( CC  \ 
( -oo (,] 0 ) ) )  =  ( `' log  |`  ( log " ( CC  \  ( -oo (,] 0 ) ) ) ) )
51, 3, 4mp2b 10 . . . . . . 7  |-  `' ( log  |`  ( CC  \  ( -oo (,] 0
) ) )  =  ( `' log  |`  ( log " ( CC  \ 
( -oo (,] 0 ) ) ) )
6 df-log 23585 . . . . . . . . . 10  |-  log  =  `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
76cnveqi 5014 . . . . . . . . 9  |-  `' log  =  `' `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
8 relres 5138 . . . . . . . . . 10  |-  Rel  ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
9 dfrel2 5292 . . . . . . . . . 10  |-  ( Rel  ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  <->  `' `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  =  ( exp  |`  ( `' Im "
( -u pi (,] pi ) ) ) )
108, 9mpbi 213 . . . . . . . . 9  |-  `' `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  =  ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
117, 10eqtri 2493 . . . . . . . 8  |-  `' log  =  ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
1211reseq1i 5107 . . . . . . 7  |-  ( `' log  |`  ( log " ( CC  \  ( -oo (,] 0 ) ) ) )  =  ( ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  |`  ( log " ( CC  \  ( -oo (,] 0 ) ) ) )
13 imassrn 5185 . . . . . . . . 9  |-  ( log " ( CC  \ 
( -oo (,] 0 ) ) )  C_  ran  log
14 logrn 23587 . . . . . . . . 9  |-  ran  log  =  ( `' Im " ( -u pi (,] pi ) )
1513, 14sseqtri 3450 . . . . . . . 8  |-  ( log " ( CC  \ 
( -oo (,] 0 ) ) )  C_  ( `' Im " ( -u pi (,] pi ) )
16 resabs1 5139 . . . . . . . 8  |-  ( ( log " ( CC 
\  ( -oo (,] 0 ) ) ) 
C_  ( `' Im " ( -u pi (,] pi ) )  ->  (
( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  |`  ( log " ( CC  \  ( -oo (,] 0 ) ) ) )  =  ( exp  |`  ( log " ( CC  \  ( -oo (,] 0 ) ) ) ) )
1715, 16ax-mp 5 . . . . . . 7  |-  ( ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  |`  ( log " ( CC  \  ( -oo (,] 0 ) ) ) )  =  ( exp  |`  ( log " ( CC  \  ( -oo (,] 0 ) ) ) )
185, 12, 173eqtri 2497 . . . . . 6  |-  `' ( log  |`  ( CC  \  ( -oo (,] 0
) ) )  =  ( exp  |`  ( log " ( CC  \ 
( -oo (,] 0 ) ) ) )
1918imaeq1i 5171 . . . . 5  |-  ( `' ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )
" ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )  =  ( ( exp  |`  ( log " ( CC  \ 
( -oo (,] 0 ) ) ) ) "
( 0 ( ball `  ( abs  o.  -  ) ) R ) )
20 cnxmet 21871 . . . . . . . . . . . . 13  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
2120a1i 11 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
22 0cnd 9654 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  0  e.  CC )
23 rpxr 11332 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  R  e. 
RR* )
2423adantr 472 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  R  e.  RR* )
25 blssm 21511 . . . . . . . . . . . 12  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  R  e.  RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) R )  C_  CC )
2621, 22, 24, 25syl3anc 1292 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  (
0 ( ball `  ( abs  o.  -  ) ) R )  C_  CC )
2726sselda 3418 . . . . . . . . . 10  |-  ( ( ( R  e.  RR+  /\  R  <  pi )  /\  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  ->  x  e.  CC )
2827imcld 13335 . . . . . . . . . . 11  |-  ( ( ( R  e.  RR+  /\  R  <  pi )  /\  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  -> 
( Im `  x
)  e.  RR )
29 efopnlem1 23680 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR+  /\  R  <  pi )  /\  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  -> 
( abs `  (
Im `  x )
)  <  pi )
30 pire 23492 . . . . . . . . . . . . . 14  |-  pi  e.  RR
31 abslt 13454 . . . . . . . . . . . . . 14  |-  ( ( ( Im `  x
)  e.  RR  /\  pi  e.  RR )  -> 
( ( abs `  (
Im `  x )
)  <  pi  <->  ( -u pi  <  ( Im `  x
)  /\  ( Im `  x )  <  pi ) ) )
3228, 30, 31sylancl 675 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR+  /\  R  <  pi )  /\  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  -> 
( ( abs `  (
Im `  x )
)  <  pi  <->  ( -u pi  <  ( Im `  x
)  /\  ( Im `  x )  <  pi ) ) )
3329, 32mpbid 215 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RR+  /\  R  <  pi )  /\  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  -> 
( -u pi  <  (
Im `  x )  /\  ( Im `  x
)  <  pi )
)
3433simpld 466 . . . . . . . . . . 11  |-  ( ( ( R  e.  RR+  /\  R  <  pi )  /\  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  ->  -u pi  <  ( Im
`  x ) )
3533simprd 470 . . . . . . . . . . 11  |-  ( ( ( R  e.  RR+  /\  R  <  pi )  /\  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  -> 
( Im `  x
)  <  pi )
3630renegcli 9955 . . . . . . . . . . . . 13  |-  -u pi  e.  RR
3736rexri 9711 . . . . . . . . . . . 12  |-  -u pi  e.  RR*
3830rexri 9711 . . . . . . . . . . . 12  |-  pi  e.  RR*
39 elioo2 11702 . . . . . . . . . . . 12  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR* )  ->  ( ( Im `  x )  e.  (
-u pi (,) pi ) 
<->  ( ( Im `  x )  e.  RR  /\  -u pi  <  ( Im
`  x )  /\  ( Im `  x )  <  pi ) ) )
4037, 38, 39mp2an 686 . . . . . . . . . . 11  |-  ( ( Im `  x )  e.  ( -u pi (,) pi )  <->  ( (
Im `  x )  e.  RR  /\  -u pi  <  ( Im `  x
)  /\  ( Im `  x )  <  pi ) )
4128, 34, 35, 40syl3anbrc 1214 . . . . . . . . . 10  |-  ( ( ( R  e.  RR+  /\  R  <  pi )  /\  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  -> 
( Im `  x
)  e.  ( -u pi (,) pi ) )
42 imf 13253 . . . . . . . . . . 11  |-  Im : CC
--> RR
43 ffn 5739 . . . . . . . . . . 11  |-  ( Im : CC --> RR  ->  Im  Fn  CC )
44 elpreima 6017 . . . . . . . . . . 11  |-  ( Im  Fn  CC  ->  (
x  e.  ( `' Im " ( -u pi (,) pi ) )  <-> 
( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) ) ) )
4542, 43, 44mp2b 10 . . . . . . . . . 10  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  <->  ( x  e.  CC  /\  ( Im
`  x )  e.  ( -u pi (,) pi ) ) )
4627, 41, 45sylanbrc 677 . . . . . . . . 9  |-  ( ( ( R  e.  RR+  /\  R  <  pi )  /\  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  ->  x  e.  ( `' Im " ( -u pi (,) pi ) ) )
4746ex 441 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  (
x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R )  ->  x  e.  ( `' Im "
( -u pi (,) pi ) ) ) )
4847ssrdv 3424 . . . . . . 7  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  (
0 ( ball `  ( abs  o.  -  ) ) R )  C_  ( `' Im " ( -u pi (,) pi ) ) )
49 df-ima 4852 . . . . . . . 8  |-  ( log " ( CC  \ 
( -oo (,] 0 ) ) )  =  ran  ( log  |`  ( CC  \  ( -oo (,] 0
) ) )
50 eqid 2471 . . . . . . . . . 10  |-  ( CC 
\  ( -oo (,] 0 ) )  =  ( CC  \  ( -oo (,] 0 ) )
5150logf1o2 23674 . . . . . . . . 9  |-  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) : ( CC 
\  ( -oo (,] 0 ) ) -1-1-onto-> ( `' Im " ( -u pi (,) pi ) )
52 f1ofo 5835 . . . . . . . . 9  |-  ( ( log  |`  ( CC  \  ( -oo (,] 0
) ) ) : ( CC  \  ( -oo (,] 0 ) ) -1-1-onto-> ( `' Im " ( -u pi (,) pi ) )  ->  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) : ( CC  \ 
( -oo (,] 0 ) ) -onto-> ( `' Im " ( -u pi (,) pi ) ) )
53 forn 5809 . . . . . . . . 9  |-  ( ( log  |`  ( CC  \  ( -oo (,] 0
) ) ) : ( CC  \  ( -oo (,] 0 ) )
-onto-> ( `' Im "
( -u pi (,) pi ) )  ->  ran  ( log  |`  ( CC  \  ( -oo (,] 0
) ) )  =  ( `' Im "
( -u pi (,) pi ) ) )
5451, 52, 53mp2b 10 . . . . . . . 8  |-  ran  ( log  |`  ( CC  \ 
( -oo (,] 0 ) ) )  =  ( `' Im " ( -u pi (,) pi ) )
5549, 54eqtri 2493 . . . . . . 7  |-  ( log " ( CC  \ 
( -oo (,] 0 ) ) )  =  ( `' Im " ( -u pi (,) pi ) )
5648, 55syl6sseqr 3465 . . . . . 6  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  (
0 ( ball `  ( abs  o.  -  ) ) R )  C_  ( log " ( CC  \ 
( -oo (,] 0 ) ) ) )
57 resima2 5144 . . . . . 6  |-  ( ( 0 ( ball `  ( abs  o.  -  ) ) R )  C_  ( log " ( CC  \ 
( -oo (,] 0 ) ) )  ->  (
( exp  |`  ( log " ( CC  \ 
( -oo (,] 0 ) ) ) ) "
( 0 ( ball `  ( abs  o.  -  ) ) R ) )  =  ( exp " ( 0 (
ball `  ( abs  o. 
-  ) ) R ) ) )
5856, 57syl 17 . . . . 5  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  (
( exp  |`  ( log " ( CC  \ 
( -oo (,] 0 ) ) ) ) "
( 0 ( ball `  ( abs  o.  -  ) ) R ) )  =  ( exp " ( 0 (
ball `  ( abs  o. 
-  ) ) R ) ) )
5919, 58syl5eq 2517 . . . 4  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  ( `' ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )
" ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )  =  ( exp " ( 0 ( ball `  ( abs  o.  -  ) ) R ) ) )
6050logcn 23671 . . . . . 6  |-  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )  e.  ( ( CC  \  ( -oo (,] 0 ) ) -cn-> CC )
61 difss 3549 . . . . . . 7  |-  ( CC 
\  ( -oo (,] 0 ) )  C_  CC
62 ssid 3437 . . . . . . 7  |-  CC  C_  CC
63 efopn.j . . . . . . . 8  |-  J  =  ( TopOpen ` fld )
64 eqid 2471 . . . . . . . 8  |-  ( Jt  ( CC  \  ( -oo (,] 0 ) ) )  =  ( Jt  ( CC 
\  ( -oo (,] 0 ) ) )
6563cnfldtop 21882 . . . . . . . . . 10  |-  J  e. 
Top
6663cnfldtopon 21881 . . . . . . . . . . . 12  |-  J  e.  (TopOn `  CC )
6766toponunii 20024 . . . . . . . . . . 11  |-  CC  =  U. J
6867restid 15410 . . . . . . . . . 10  |-  ( J  e.  Top  ->  ( Jt  CC )  =  J
)
6965, 68ax-mp 5 . . . . . . . . 9  |-  ( Jt  CC )  =  J
7069eqcomi 2480 . . . . . . . 8  |-  J  =  ( Jt  CC )
7163, 64, 70cncfcn 22019 . . . . . . 7  |-  ( ( ( CC  \  ( -oo (,] 0 ) ) 
C_  CC  /\  CC  C_  CC )  ->  ( ( CC  \  ( -oo (,] 0 ) ) -cn-> CC )  =  ( ( Jt  ( CC  \  ( -oo (,] 0 ) ) )  Cn  J ) )
7261, 62, 71mp2an 686 . . . . . 6  |-  ( ( CC  \  ( -oo (,] 0 ) ) -cn-> CC )  =  ( ( Jt  ( CC  \  ( -oo (,] 0 ) ) )  Cn  J )
7360, 72eleqtri 2547 . . . . 5  |-  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )  e.  ( ( Jt  ( CC  \  ( -oo (,] 0 ) ) )  Cn  J )
7463cnfldtopn 21880 . . . . . . 7  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
7574blopn 21593 . . . . . 6  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  R  e.  RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) R )  e.  J
)
7621, 22, 24, 75syl3anc 1292 . . . . 5  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  (
0 ( ball `  ( abs  o.  -  ) ) R )  e.  J
)
77 cnima 20358 . . . . 5  |-  ( ( ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )  e.  ( ( Jt  ( CC  \  ( -oo (,] 0 ) ) )  Cn  J )  /\  ( 0 ( ball `  ( abs  o.  -  ) ) R )  e.  J )  -> 
( `' ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) " ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  e.  ( Jt  ( CC  \ 
( -oo (,] 0 ) ) ) )
7873, 76, 77sylancr 676 . . . 4  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  ( `' ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )
" ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )  e.  ( Jt  ( CC  \  ( -oo (,] 0 ) ) ) )
7959, 78eqeltrrd 2550 . . 3  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  ( exp " ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )  e.  ( Jt  ( CC  \  ( -oo (,] 0 ) ) ) )
8050logdmopn 23673 . . . . 5  |-  ( CC 
\  ( -oo (,] 0 ) )  e.  ( TopOpen ` fld )
8180, 63eleqtrri 2548 . . . 4  |-  ( CC 
\  ( -oo (,] 0 ) )  e.  J
82 restopn2 20270 . . . 4  |-  ( ( J  e.  Top  /\  ( CC  \  ( -oo (,] 0 ) )  e.  J )  -> 
( ( exp " (
0 ( ball `  ( abs  o.  -  ) ) R ) )  e.  ( Jt  ( CC  \ 
( -oo (,] 0 ) ) )  <->  ( ( exp " ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )  e.  J  /\  ( exp " (
0 ( ball `  ( abs  o.  -  ) ) R ) )  C_  ( CC  \  ( -oo (,] 0 ) ) ) ) )
8365, 81, 82mp2an 686 . . 3  |-  ( ( exp " ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  e.  ( Jt  ( CC  \ 
( -oo (,] 0 ) ) )  <->  ( ( exp " ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )  e.  J  /\  ( exp " (
0 ( ball `  ( abs  o.  -  ) ) R ) )  C_  ( CC  \  ( -oo (,] 0 ) ) ) )
8479, 83sylib 201 . 2  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  (
( exp " (
0 ( ball `  ( abs  o.  -  ) ) R ) )  e.  J  /\  ( exp " ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )  C_  ( CC  \  ( -oo (,] 0 ) ) ) )
8584simpld 466 1  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  ( exp " ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )  e.  J
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    \ cdif 3387    C_ wss 3390   {csn 3959   class class class wbr 4395   `'ccnv 4838   ran crn 4840    |` cres 4841   "cima 4842    o. ccom 4843   Rel wrel 4844   Fun wfun 5583    Fn wfn 5584   -->wf 5585   -onto->wfo 5587   -1-1-onto->wf1o 5588   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   -oocmnf 9691   RR*cxr 9692    < clt 9693    - cmin 9880   -ucneg 9881   RR+crp 11325   (,)cioo 11660   (,]cioc 11661   Imcim 13238   abscabs 13374   expce 14191   picpi 14196   ↾t crest 15397   TopOpenctopn 15398   *Metcxmt 19032   ballcbl 19034  ℂfldccnfld 19047   Topctop 19994    Cn ccn 20317   -cn->ccncf 21986   logclog 23583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-sin 14200  df-cos 14201  df-tan 14202  df-pi 14203  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-cmp 20479  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-limc 22900  df-dv 22901  df-log 23585
This theorem is referenced by:  efopn  23682
  Copyright terms: Public domain W3C validator