MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efival Structured version   Unicode version

Theorem efival 13428
Description: The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
efival  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )

Proof of Theorem efival
StepHypRef Expression
1 ax-icn 9333 . . . . . 6  |-  _i  e.  CC
2 mulcl 9358 . . . . . 6  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
31, 2mpan 670 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
4 efcl 13360 . . . . 5  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
53, 4syl 16 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
6 negicn 9603 . . . . . 6  |-  -u _i  e.  CC
7 mulcl 9358 . . . . . 6  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
86, 7mpan 670 . . . . 5  |-  ( A  e.  CC  ->  ( -u _i  x.  A )  e.  CC )
9 efcl 13360 . . . . 5  |-  ( (
-u _i  x.  A
)  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
108, 9syl 16 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
115, 10addcld 9397 . . 3  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
125, 10subcld 9711 . . 3  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
13 2cn 10384 . . . . 5  |-  2  e.  CC
14 2ne0 10406 . . . . 5  |-  2  =/=  0
1513, 14pm3.2i 455 . . . 4  |-  ( 2  e.  CC  /\  2  =/=  0 )
16 divdir 10009 . . . 4  |-  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
2  e.  CC  /\  2  =/=  0 ) )  ->  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  /  2 )  =  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  +  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
1715, 16mp3an3 1303 . . 3  |-  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )  -> 
( ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) )  /  2 )  =  ( ( ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  +  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
1811, 12, 17syl2anc 661 . 2  |-  ( A  e.  CC  ->  (
( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  / 
2 )  =  ( ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  +  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2
) ) )
1910, 5pncan3d 9714 . . . . . 6  |-  ( A  e.  CC  ->  (
( exp `  ( -u _i  x.  A ) )  +  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( exp `  (
_i  x.  A )
) )
2019oveq2d 6102 . . . . 5  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  +  ( ( exp `  ( -u _i  x.  A ) )  +  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) ) )  =  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( _i  x.  A
) ) ) )
215, 10, 12addassd 9400 . . . . 5  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( ( exp `  ( _i  x.  A ) )  +  ( ( exp `  ( -u _i  x.  A ) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
2252timesd 10559 . . . . 5  |-  ( A  e.  CC  ->  (
2  x.  ( exp `  ( _i  x.  A
) ) )  =  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( _i  x.  A
) ) ) )
2320, 21, 223eqtr4d 2480 . . . 4  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( 2  x.  ( exp `  (
_i  x.  A )
) ) )
2423oveq1d 6101 . . 3  |-  ( A  e.  CC  ->  (
( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  / 
2 )  =  ( ( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 ) )
25 divcan3 10010 . . . . 5  |-  ( ( ( exp `  (
_i  x.  A )
)  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 )  =  ( exp `  (
_i  x.  A )
) )
2613, 14, 25mp3an23 1306 . . . 4  |-  ( ( exp `  ( _i  x.  A ) )  e.  CC  ->  (
( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 )  =  ( exp `  (
_i  x.  A )
) )
275, 26syl 16 . . 3  |-  ( A  e.  CC  ->  (
( 2  x.  ( exp `  ( _i  x.  A ) ) )  /  2 )  =  ( exp `  (
_i  x.  A )
) )
2824, 27eqtr2d 2471 . 2  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  +  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) )  /  2 ) )
29 cosval 13399 . . 3  |-  ( A  e.  CC  ->  ( cos `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
30 2mulicn 10540 . . . . . . 7  |-  ( 2  x.  _i )  e.  CC
31 2muline0 10541 . . . . . . 7  |-  ( 2  x.  _i )  =/=  0
3230, 31pm3.2i 455 . . . . . 6  |-  ( ( 2  x.  _i )  e.  CC  /\  (
2  x.  _i )  =/=  0 )
33 div12 10008 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
( 2  x.  _i )  e.  CC  /\  (
2  x.  _i )  =/=  0 ) )  ->  ( _i  x.  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  (
_i  /  ( 2  x.  _i ) ) ) )
341, 32, 33mp3an13 1305 . . . . 5  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  ->  (
_i  x.  ( (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  (
_i  /  ( 2  x.  _i ) ) ) )
3512, 34syl 16 . . . 4  |-  ( A  e.  CC  ->  (
_i  x.  ( (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  (
_i  /  ( 2  x.  _i ) ) ) )
36 sinval 13398 . . . . 5  |-  ( A  e.  CC  ->  ( sin `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )
3736oveq2d 6102 . . . 4  |-  ( A  e.  CC  ->  (
_i  x.  ( sin `  A ) )  =  ( _i  x.  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) ) )
38 divrec 10002 . . . . . . 7  |-  ( ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) ) )
3913, 14, 38mp3an23 1306 . . . . . 6  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) ) )
4012, 39syl 16 . . . . 5  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) ) )
411mulid2i 9381 . . . . . . . 8  |-  ( 1  x.  _i )  =  _i
4241oveq1i 6096 . . . . . . 7  |-  ( ( 1  x.  _i )  /  ( 2  x.  _i ) )  =  ( _i  /  (
2  x.  _i ) )
43 ine0 9772 . . . . . . . . . . 11  |-  _i  =/=  0
441, 43dividi 10056 . . . . . . . . . 10  |-  ( _i 
/  _i )  =  1
4544oveq2i 6097 . . . . . . . . 9  |-  ( ( 1  /  2 )  x.  ( _i  /  _i ) )  =  ( ( 1  /  2
)  x.  1 )
46 ax-1cn 9332 . . . . . . . . . 10  |-  1  e.  CC
4746, 13, 1, 1, 14, 43divmuldivi 10083 . . . . . . . . 9  |-  ( ( 1  /  2 )  x.  ( _i  /  _i ) )  =  ( ( 1  x.  _i )  /  ( 2  x.  _i ) )
4845, 47eqtr3i 2460 . . . . . . . 8  |-  ( ( 1  /  2 )  x.  1 )  =  ( ( 1  x.  _i )  /  (
2  x.  _i ) )
49 halfcn 10533 . . . . . . . . 9  |-  ( 1  /  2 )  e.  CC
5049mulid1i 9380 . . . . . . . 8  |-  ( ( 1  /  2 )  x.  1 )  =  ( 1  /  2
)
5148, 50eqtr3i 2460 . . . . . . 7  |-  ( ( 1  x.  _i )  /  ( 2  x.  _i ) )  =  ( 1  /  2
)
5242, 51eqtr3i 2460 . . . . . 6  |-  ( _i 
/  ( 2  x.  _i ) )  =  ( 1  /  2
)
5352oveq2i 6097 . . . . 5  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( _i  / 
( 2  x.  _i ) ) )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( 1  / 
2 ) )
5440, 53syl6eqr 2488 . . . 4  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  x.  ( _i  / 
( 2  x.  _i ) ) ) )
5535, 37, 543eqtr4d 2480 . . 3  |-  ( A  e.  CC  ->  (
_i  x.  ( sin `  A ) )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
5629, 55oveq12d 6104 . 2  |-  ( A  e.  CC  ->  (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) )  =  ( ( ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2
)  +  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) ) )
5718, 28, 563eqtr4d 2480 1  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601   ` cfv 5413  (class class class)co 6086   CCcc 9272   0cc0 9274   1c1 9275   _ici 9276    + caddc 9277    x. cmul 9279    - cmin 9587   -ucneg 9588    / cdiv 9985   2c2 10363   expce 13339   sincsin 13341   cosccos 13342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-ico 11298  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-fac 12044  df-hash 12096  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-ef 13345  df-sin 13347  df-cos 13348
This theorem is referenced by:  efmival  13429  efeul  13438  efieq  13439  sinadd  13440  cosadd  13441  absefi  13472  demoivre  13476  efhalfpi  21908  efipi  21910  ef2pi  21914  efimpi  21928  efif1olem4  21976  1cubrlem  22211  asinsin  22262  atantan  22293
  Copyright terms: Public domain W3C validator