MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efif1olem2 Structured version   Unicode version

Theorem efif1olem2 23479
Description: Lemma for efif1o 23482. (Contributed by Mario Carneiro, 13-May-2014.)
Hypothesis
Ref Expression
efif1olem1.1  |-  D  =  ( A (,] ( A  +  ( 2  x.  pi ) ) )
Assertion
Ref Expression
efif1olem2  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  E. y  e.  D  ( ( z  -  y )  /  (
2  x.  pi ) )  e.  ZZ )
Distinct variable groups:    y, z    y, A    y, D
Allowed substitution hints:    A( z)    D( z)

Proof of Theorem efif1olem2
StepHypRef Expression
1 simpl 458 . . . . . 6  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  A  e.  RR )
2 2re 10680 . . . . . . 7  |-  2  e.  RR
3 pire 23400 . . . . . . 7  |-  pi  e.  RR
42, 3remulcli 9658 . . . . . 6  |-  ( 2  x.  pi )  e.  RR
5 readdcl 9623 . . . . . 6  |-  ( ( A  e.  RR  /\  ( 2  x.  pi )  e.  RR )  ->  ( A  +  ( 2  x.  pi ) )  e.  RR )
61, 4, 5sylancl 666 . . . . 5  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( A  +  ( 2  x.  pi ) )  e.  RR )
7 resubcl 9939 . . . . . 6  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( A  -  z
)  e.  RR )
8 2pos 10702 . . . . . . . 8  |-  0  <  2
9 pipos 23402 . . . . . . . 8  |-  0  <  pi
102, 3, 8, 9mulgt0ii 9769 . . . . . . 7  |-  0  <  ( 2  x.  pi )
114, 10elrpii 11306 . . . . . 6  |-  ( 2  x.  pi )  e.  RR+
12 modcl 12100 . . . . . 6  |-  ( ( ( A  -  z
)  e.  RR  /\  ( 2  x.  pi )  e.  RR+ )  -> 
( ( A  -  z )  mod  (
2  x.  pi ) )  e.  RR )
137, 11, 12sylancl 666 . . . . 5  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( A  -  z )  mod  (
2  x.  pi ) )  e.  RR )
146, 13resubcld 10048 . . . 4  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( A  +  ( 2  x.  pi ) )  -  (
( A  -  z
)  mod  ( 2  x.  pi ) ) )  e.  RR )
154a1i 11 . . . . . 6  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( 2  x.  pi )  e.  RR )
16 modlt 12107 . . . . . . 7  |-  ( ( ( A  -  z
)  e.  RR  /\  ( 2  x.  pi )  e.  RR+ )  -> 
( ( A  -  z )  mod  (
2  x.  pi ) )  <  ( 2  x.  pi ) )
177, 11, 16sylancl 666 . . . . . 6  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( A  -  z )  mod  (
2  x.  pi ) )  <  ( 2  x.  pi ) )
1813, 15, 1, 17ltadd2dd 9795 . . . . 5  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( A  +  ( ( A  -  z
)  mod  ( 2  x.  pi ) ) )  <  ( A  +  ( 2  x.  pi ) ) )
191, 13, 6ltaddsubd 10214 . . . . 5  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( A  +  ( ( A  -  z )  mod  (
2  x.  pi ) ) )  <  ( A  +  ( 2  x.  pi ) )  <-> 
A  <  ( ( A  +  ( 2  x.  pi ) )  -  ( ( A  -  z )  mod  ( 2  x.  pi ) ) ) ) )
2018, 19mpbid 213 . . . 4  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  A  <  ( ( A  +  ( 2  x.  pi ) )  -  ( ( A  -  z )  mod  ( 2  x.  pi ) ) ) )
21 modge0 12106 . . . . . 6  |-  ( ( ( A  -  z
)  e.  RR  /\  ( 2  x.  pi )  e.  RR+ )  -> 
0  <_  ( ( A  -  z )  mod  ( 2  x.  pi ) ) )
227, 11, 21sylancl 666 . . . . 5  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  0  <_  ( ( A  -  z )  mod  ( 2  x.  pi ) ) )
236, 13subge02d 10206 . . . . 5  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( 0  <_  (
( A  -  z
)  mod  ( 2  x.  pi ) )  <-> 
( ( A  +  ( 2  x.  pi ) )  -  (
( A  -  z
)  mod  ( 2  x.  pi ) ) )  <_  ( A  +  ( 2  x.  pi ) ) ) )
2422, 23mpbid 213 . . . 4  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( A  +  ( 2  x.  pi ) )  -  (
( A  -  z
)  mod  ( 2  x.  pi ) ) )  <_  ( A  +  ( 2  x.  pi ) ) )
25 rexr 9687 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  RR* )
2625adantr 466 . . . . 5  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  A  e.  RR* )
27 elioc2 11698 . . . . 5  |-  ( ( A  e.  RR*  /\  ( A  +  ( 2  x.  pi ) )  e.  RR )  -> 
( ( ( A  +  ( 2  x.  pi ) )  -  ( ( A  -  z )  mod  (
2  x.  pi ) ) )  e.  ( A (,] ( A  +  ( 2  x.  pi ) ) )  <-> 
( ( ( A  +  ( 2  x.  pi ) )  -  ( ( A  -  z )  mod  (
2  x.  pi ) ) )  e.  RR  /\  A  <  ( ( A  +  ( 2  x.  pi ) )  -  ( ( A  -  z )  mod  ( 2  x.  pi ) ) )  /\  ( ( A  +  ( 2  x.  pi ) )  -  (
( A  -  z
)  mod  ( 2  x.  pi ) ) )  <_  ( A  +  ( 2  x.  pi ) ) ) ) )
2826, 6, 27syl2anc 665 . . . 4  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( ( A  +  ( 2  x.  pi ) )  -  ( ( A  -  z )  mod  (
2  x.  pi ) ) )  e.  ( A (,] ( A  +  ( 2  x.  pi ) ) )  <-> 
( ( ( A  +  ( 2  x.  pi ) )  -  ( ( A  -  z )  mod  (
2  x.  pi ) ) )  e.  RR  /\  A  <  ( ( A  +  ( 2  x.  pi ) )  -  ( ( A  -  z )  mod  ( 2  x.  pi ) ) )  /\  ( ( A  +  ( 2  x.  pi ) )  -  (
( A  -  z
)  mod  ( 2  x.  pi ) ) )  <_  ( A  +  ( 2  x.  pi ) ) ) ) )
2914, 20, 24, 28mpbir3and 1188 . . 3  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( A  +  ( 2  x.  pi ) )  -  (
( A  -  z
)  mod  ( 2  x.  pi ) ) )  e.  ( A (,] ( A  +  ( 2  x.  pi ) ) ) )
30 efif1olem1.1 . . 3  |-  D  =  ( A (,] ( A  +  ( 2  x.  pi ) ) )
3129, 30syl6eleqr 2521 . 2  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( A  +  ( 2  x.  pi ) )  -  (
( A  -  z
)  mod  ( 2  x.  pi ) ) )  e.  D )
32 modval 12098 . . . . . . . . . 10  |-  ( ( ( A  -  z
)  e.  RR  /\  ( 2  x.  pi )  e.  RR+ )  -> 
( ( A  -  z )  mod  (
2  x.  pi ) )  =  ( ( A  -  z )  -  ( ( 2  x.  pi )  x.  ( |_ `  (
( A  -  z
)  /  ( 2  x.  pi ) ) ) ) ) )
337, 11, 32sylancl 666 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( A  -  z )  mod  (
2  x.  pi ) )  =  ( ( A  -  z )  -  ( ( 2  x.  pi )  x.  ( |_ `  (
( A  -  z
)  /  ( 2  x.  pi ) ) ) ) ) )
3433oveq2d 6318 . . . . . . . 8  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( A  +  ( 2  x.  pi ) )  -  (
( A  -  z
)  mod  ( 2  x.  pi ) ) )  =  ( ( A  +  ( 2  x.  pi ) )  -  ( ( A  -  z )  -  ( ( 2  x.  pi )  x.  ( |_ `  ( ( A  -  z )  / 
( 2  x.  pi ) ) ) ) ) ) )
356recnd 9670 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( A  +  ( 2  x.  pi ) )  e.  CC )
367recnd 9670 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( A  -  z
)  e.  CC )
374, 10gt0ne0ii 10151 . . . . . . . . . . . . . . 15  |-  ( 2  x.  pi )  =/=  0
38 redivcl 10327 . . . . . . . . . . . . . . 15  |-  ( ( ( A  -  z
)  e.  RR  /\  ( 2  x.  pi )  e.  RR  /\  (
2  x.  pi )  =/=  0 )  -> 
( ( A  -  z )  /  (
2  x.  pi ) )  e.  RR )
394, 37, 38mp3an23 1352 . . . . . . . . . . . . . 14  |-  ( ( A  -  z )  e.  RR  ->  (
( A  -  z
)  /  ( 2  x.  pi ) )  e.  RR )
407, 39syl 17 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( A  -  z )  /  (
2  x.  pi ) )  e.  RR )
4140flcld 12034 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( |_ `  (
( A  -  z
)  /  ( 2  x.  pi ) ) )  e.  ZZ )
4241zred 11041 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( |_ `  (
( A  -  z
)  /  ( 2  x.  pi ) ) )  e.  RR )
43 remulcl 9625 . . . . . . . . . . 11  |-  ( ( ( 2  x.  pi )  e.  RR  /\  ( |_ `  ( ( A  -  z )  / 
( 2  x.  pi ) ) )  e.  RR )  ->  (
( 2  x.  pi )  x.  ( |_ `  ( ( A  -  z )  /  (
2  x.  pi ) ) ) )  e.  RR )
444, 42, 43sylancr 667 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( 2  x.  pi )  x.  ( |_ `  ( ( A  -  z )  / 
( 2  x.  pi ) ) ) )  e.  RR )
4544recnd 9670 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( 2  x.  pi )  x.  ( |_ `  ( ( A  -  z )  / 
( 2  x.  pi ) ) ) )  e.  CC )
4635, 36, 45subsubd 10015 . . . . . . . 8  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( A  +  ( 2  x.  pi ) )  -  (
( A  -  z
)  -  ( ( 2  x.  pi )  x.  ( |_ `  ( ( A  -  z )  /  (
2  x.  pi ) ) ) ) ) )  =  ( ( ( A  +  ( 2  x.  pi ) )  -  ( A  -  z ) )  +  ( ( 2  x.  pi )  x.  ( |_ `  (
( A  -  z
)  /  ( 2  x.  pi ) ) ) ) ) )
471recnd 9670 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  A  e.  CC )
484recni 9656 . . . . . . . . . . 11  |-  ( 2  x.  pi )  e.  CC
4948a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( 2  x.  pi )  e.  CC )
50 simpr 462 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  z  e.  RR )
5150recnd 9670 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  z  e.  CC )
5247, 49, 51pnncand 10026 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( A  +  ( 2  x.  pi ) )  -  ( A  -  z )
)  =  ( ( 2  x.  pi )  +  z ) )
5352oveq1d 6317 . . . . . . . 8  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( ( A  +  ( 2  x.  pi ) )  -  ( A  -  z
) )  +  ( ( 2  x.  pi )  x.  ( |_ `  ( ( A  -  z )  /  (
2  x.  pi ) ) ) ) )  =  ( ( ( 2  x.  pi )  +  z )  +  ( ( 2  x.  pi )  x.  ( |_ `  ( ( A  -  z )  / 
( 2  x.  pi ) ) ) ) ) )
5434, 46, 533eqtrd 2467 . . . . . . 7  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( A  +  ( 2  x.  pi ) )  -  (
( A  -  z
)  mod  ( 2  x.  pi ) ) )  =  ( ( ( 2  x.  pi )  +  z )  +  ( ( 2  x.  pi )  x.  ( |_ `  (
( A  -  z
)  /  ( 2  x.  pi ) ) ) ) ) )
5554oveq2d 6318 . . . . . 6  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( z  -  (
( A  +  ( 2  x.  pi ) )  -  ( ( A  -  z )  mod  ( 2  x.  pi ) ) ) )  =  ( z  -  ( ( ( 2  x.  pi )  +  z )  +  ( ( 2  x.  pi )  x.  ( |_ `  ( ( A  -  z )  / 
( 2  x.  pi ) ) ) ) ) ) )
56 addcl 9622 . . . . . . . 8  |-  ( ( ( 2  x.  pi )  e.  CC  /\  z  e.  CC )  ->  (
( 2  x.  pi )  +  z )  e.  CC )
5748, 51, 56sylancr 667 . . . . . . 7  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( 2  x.  pi )  +  z )  e.  CC )
5851, 57, 45subsub4d 10018 . . . . . 6  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( z  -  ( ( 2  x.  pi )  +  z ) )  -  (
( 2  x.  pi )  x.  ( |_ `  ( ( A  -  z )  /  (
2  x.  pi ) ) ) ) )  =  ( z  -  ( ( ( 2  x.  pi )  +  z )  +  ( ( 2  x.  pi )  x.  ( |_ `  ( ( A  -  z )  /  (
2  x.  pi ) ) ) ) ) ) )
5957, 51negsubdi2d 10003 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  z  e.  RR )  -> 
-u ( ( ( 2  x.  pi )  +  z )  -  z )  =  ( z  -  ( ( 2  x.  pi )  +  z ) ) )
6049, 51pncand 9988 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( ( 2  x.  pi )  +  z )  -  z
)  =  ( 2  x.  pi ) )
6160negeqd 9870 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  z  e.  RR )  -> 
-u ( ( ( 2  x.  pi )  +  z )  -  z )  =  -u ( 2  x.  pi ) )
6259, 61eqtr3d 2465 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( z  -  (
( 2  x.  pi )  +  z )
)  =  -u (
2  x.  pi ) )
63 neg1cn 10714 . . . . . . . . . 10  |-  -u 1  e.  CC
6448mulm1i 10064 . . . . . . . . . 10  |-  ( -u
1  x.  ( 2  x.  pi ) )  =  -u ( 2  x.  pi )
6563, 48, 64mulcomli 9651 . . . . . . . . 9  |-  ( ( 2  x.  pi )  x.  -u 1 )  = 
-u ( 2  x.  pi )
6662, 65syl6eqr 2481 . . . . . . . 8  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( z  -  (
( 2  x.  pi )  +  z )
)  =  ( ( 2  x.  pi )  x.  -u 1 ) )
6766oveq1d 6317 . . . . . . 7  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( z  -  ( ( 2  x.  pi )  +  z ) )  -  (
( 2  x.  pi )  x.  ( |_ `  ( ( A  -  z )  /  (
2  x.  pi ) ) ) ) )  =  ( ( ( 2  x.  pi )  x.  -u 1 )  -  ( ( 2  x.  pi )  x.  ( |_ `  ( ( A  -  z )  / 
( 2  x.  pi ) ) ) ) ) )
6863a1i 11 . . . . . . . 8  |-  ( ( A  e.  RR  /\  z  e.  RR )  -> 
-u 1  e.  CC )
6941zcnd 11042 . . . . . . . 8  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( |_ `  (
( A  -  z
)  /  ( 2  x.  pi ) ) )  e.  CC )
7049, 68, 69subdid 10075 . . . . . . 7  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( 2  x.  pi )  x.  ( -u 1  -  ( |_
`  ( ( A  -  z )  / 
( 2  x.  pi ) ) ) ) )  =  ( ( ( 2  x.  pi )  x.  -u 1 )  -  ( ( 2  x.  pi )  x.  ( |_ `  (
( A  -  z
)  /  ( 2  x.  pi ) ) ) ) ) )
7167, 70eqtr4d 2466 . . . . . 6  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( z  -  ( ( 2  x.  pi )  +  z ) )  -  (
( 2  x.  pi )  x.  ( |_ `  ( ( A  -  z )  /  (
2  x.  pi ) ) ) ) )  =  ( ( 2  x.  pi )  x.  ( -u 1  -  ( |_ `  (
( A  -  z
)  /  ( 2  x.  pi ) ) ) ) ) )
7255, 58, 713eqtr2d 2469 . . . . 5  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( z  -  (
( A  +  ( 2  x.  pi ) )  -  ( ( A  -  z )  mod  ( 2  x.  pi ) ) ) )  =  ( ( 2  x.  pi )  x.  ( -u 1  -  ( |_ `  ( ( A  -  z )  /  (
2  x.  pi ) ) ) ) ) )
7372oveq1d 6317 . . . 4  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( z  -  ( ( A  +  ( 2  x.  pi ) )  -  (
( A  -  z
)  mod  ( 2  x.  pi ) ) ) )  /  (
2  x.  pi ) )  =  ( ( ( 2  x.  pi )  x.  ( -u 1  -  ( |_ `  ( ( A  -  z )  /  (
2  x.  pi ) ) ) ) )  /  ( 2  x.  pi ) ) )
74 neg1z 10974 . . . . . . 7  |-  -u 1  e.  ZZ
75 zsubcl 10980 . . . . . . 7  |-  ( (
-u 1  e.  ZZ  /\  ( |_ `  (
( A  -  z
)  /  ( 2  x.  pi ) ) )  e.  ZZ )  ->  ( -u 1  -  ( |_ `  ( ( A  -  z )  /  (
2  x.  pi ) ) ) )  e.  ZZ )
7674, 41, 75sylancr 667 . . . . . 6  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( -u 1  -  ( |_ `  (
( A  -  z
)  /  ( 2  x.  pi ) ) ) )  e.  ZZ )
7776zcnd 11042 . . . . 5  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( -u 1  -  ( |_ `  (
( A  -  z
)  /  ( 2  x.  pi ) ) ) )  e.  CC )
78 divcan3 10295 . . . . . 6  |-  ( ( ( -u 1  -  ( |_ `  (
( A  -  z
)  /  ( 2  x.  pi ) ) ) )  e.  CC  /\  ( 2  x.  pi )  e.  CC  /\  (
2  x.  pi )  =/=  0 )  -> 
( ( ( 2  x.  pi )  x.  ( -u 1  -  ( |_ `  (
( A  -  z
)  /  ( 2  x.  pi ) ) ) ) )  / 
( 2  x.  pi ) )  =  (
-u 1  -  ( |_ `  ( ( A  -  z )  / 
( 2  x.  pi ) ) ) ) )
7948, 37, 78mp3an23 1352 . . . . 5  |-  ( (
-u 1  -  ( |_ `  ( ( A  -  z )  / 
( 2  x.  pi ) ) ) )  e.  CC  ->  (
( ( 2  x.  pi )  x.  ( -u 1  -  ( |_
`  ( ( A  -  z )  / 
( 2  x.  pi ) ) ) ) )  /  ( 2  x.  pi ) )  =  ( -u 1  -  ( |_ `  ( ( A  -  z )  /  (
2  x.  pi ) ) ) ) )
8077, 79syl 17 . . . 4  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( ( 2  x.  pi )  x.  ( -u 1  -  ( |_ `  (
( A  -  z
)  /  ( 2  x.  pi ) ) ) ) )  / 
( 2  x.  pi ) )  =  (
-u 1  -  ( |_ `  ( ( A  -  z )  / 
( 2  x.  pi ) ) ) ) )
8173, 80eqtrd 2463 . . 3  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( z  -  ( ( A  +  ( 2  x.  pi ) )  -  (
( A  -  z
)  mod  ( 2  x.  pi ) ) ) )  /  (
2  x.  pi ) )  =  ( -u
1  -  ( |_
`  ( ( A  -  z )  / 
( 2  x.  pi ) ) ) ) )
8281, 76eqeltrd 2510 . 2  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( ( z  -  ( ( A  +  ( 2  x.  pi ) )  -  (
( A  -  z
)  mod  ( 2  x.  pi ) ) ) )  /  (
2  x.  pi ) )  e.  ZZ )
83 oveq2 6310 . . . . 5  |-  ( y  =  ( ( A  +  ( 2  x.  pi ) )  -  ( ( A  -  z )  mod  (
2  x.  pi ) ) )  ->  (
z  -  y )  =  ( z  -  ( ( A  +  ( 2  x.  pi ) )  -  (
( A  -  z
)  mod  ( 2  x.  pi ) ) ) ) )
8483oveq1d 6317 . . . 4  |-  ( y  =  ( ( A  +  ( 2  x.  pi ) )  -  ( ( A  -  z )  mod  (
2  x.  pi ) ) )  ->  (
( z  -  y
)  /  ( 2  x.  pi ) )  =  ( ( z  -  ( ( A  +  ( 2  x.  pi ) )  -  ( ( A  -  z )  mod  (
2  x.  pi ) ) ) )  / 
( 2  x.  pi ) ) )
8584eleq1d 2491 . . 3  |-  ( y  =  ( ( A  +  ( 2  x.  pi ) )  -  ( ( A  -  z )  mod  (
2  x.  pi ) ) )  ->  (
( ( z  -  y )  /  (
2  x.  pi ) )  e.  ZZ  <->  ( (
z  -  ( ( A  +  ( 2  x.  pi ) )  -  ( ( A  -  z )  mod  ( 2  x.  pi ) ) ) )  /  ( 2  x.  pi ) )  e.  ZZ ) )
8685rspcev 3182 . 2  |-  ( ( ( ( A  +  ( 2  x.  pi ) )  -  (
( A  -  z
)  mod  ( 2  x.  pi ) ) )  e.  D  /\  ( ( z  -  ( ( A  +  ( 2  x.  pi ) )  -  (
( A  -  z
)  mod  ( 2  x.  pi ) ) ) )  /  (
2  x.  pi ) )  e.  ZZ )  ->  E. y  e.  D  ( ( z  -  y )  /  (
2  x.  pi ) )  e.  ZZ )
8731, 82, 86syl2anc 665 1  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  E. y  e.  D  ( ( z  -  y )  /  (
2  x.  pi ) )  e.  ZZ )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    =/= wne 2618   E.wrex 2776   class class class wbr 4420   ` cfv 5598  (class class class)co 6302   CCcc 9538   RRcr 9539   0cc0 9540   1c1 9541    + caddc 9543    x. cmul 9545   RR*cxr 9675    < clt 9676    <_ cle 9677    - cmin 9861   -ucneg 9862    / cdiv 10270   2c2 10660   ZZcz 10938   RR+crp 11303   (,]cioc 11637   |_cfl 12026    mod cmo 12096   picpi 14107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-inf2 8149  ax-cnex 9596  ax-resscn 9597  ax-1cn 9598  ax-icn 9599  ax-addcl 9600  ax-addrcl 9601  ax-mulcl 9602  ax-mulrcl 9603  ax-mulcom 9604  ax-addass 9605  ax-mulass 9606  ax-distr 9607  ax-i2m1 9608  ax-1ne0 9609  ax-1rid 9610  ax-rnegex 9611  ax-rrecex 9612  ax-cnre 9613  ax-pre-lttri 9614  ax-pre-lttrn 9615  ax-pre-ltadd 9616  ax-pre-mulgt0 9617  ax-pre-sup 9618  ax-addf 9619  ax-mulf 9620
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4761  df-id 4765  df-po 4771  df-so 4772  df-fr 4809  df-se 4810  df-we 4811  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-pred 5396  df-ord 5442  df-on 5443  df-lim 5444  df-suc 5445  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-isom 5607  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-of 6542  df-om 6704  df-1st 6804  df-2nd 6805  df-supp 6923  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-2o 7188  df-oadd 7191  df-er 7368  df-map 7479  df-pm 7480  df-ixp 7528  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-fsupp 7887  df-fi 7928  df-sup 7959  df-inf 7960  df-oi 8028  df-card 8375  df-cda 8599  df-pnf 9678  df-mnf 9679  df-xr 9680  df-ltxr 9681  df-le 9682  df-sub 9863  df-neg 9864  df-div 10271  df-nn 10611  df-2 10669  df-3 10670  df-4 10671  df-5 10672  df-6 10673  df-7 10674  df-8 10675  df-9 10676  df-10 10677  df-n0 10871  df-z 10939  df-dec 11053  df-uz 11161  df-q 11266  df-rp 11304  df-xneg 11410  df-xadd 11411  df-xmul 11412  df-ioo 11640  df-ioc 11641  df-ico 11642  df-icc 11643  df-fz 11786  df-fzo 11917  df-fl 12028  df-mod 12097  df-seq 12214  df-exp 12273  df-fac 12460  df-bc 12488  df-hash 12516  df-shft 13119  df-cj 13151  df-re 13152  df-im 13153  df-sqrt 13287  df-abs 13288  df-limsup 13514  df-clim 13540  df-rlim 13541  df-sum 13741  df-ef 14109  df-sin 14111  df-cos 14112  df-pi 14114  df-struct 15111  df-ndx 15112  df-slot 15113  df-base 15114  df-sets 15115  df-ress 15116  df-plusg 15191  df-mulr 15192  df-starv 15193  df-sca 15194  df-vsca 15195  df-ip 15196  df-tset 15197  df-ple 15198  df-ds 15200  df-unif 15201  df-hom 15202  df-cco 15203  df-rest 15309  df-topn 15310  df-0g 15328  df-gsum 15329  df-topgen 15330  df-pt 15331  df-prds 15334  df-xrs 15388  df-qtop 15394  df-imas 15395  df-xps 15398  df-mre 15480  df-mrc 15481  df-acs 15483  df-mgm 16476  df-sgrp 16515  df-mnd 16525  df-submnd 16571  df-mulg 16664  df-cntz 16959  df-cmn 17420  df-psmet 18950  df-xmet 18951  df-met 18952  df-bl 18953  df-mopn 18954  df-fbas 18955  df-fg 18956  df-cnfld 18959  df-top 19908  df-bases 19909  df-topon 19910  df-topsp 19911  df-cld 20021  df-ntr 20022  df-cls 20023  df-nei 20101  df-lp 20139  df-perf 20140  df-cn 20230  df-cnp 20231  df-haus 20318  df-tx 20564  df-hmeo 20757  df-fil 20848  df-fm 20940  df-flim 20941  df-flf 20942  df-xms 21322  df-ms 21323  df-tms 21324  df-cncf 21897  df-limc 22808  df-dv 22809
This theorem is referenced by:  efif1o  23482  eff1o  23485
  Copyright terms: Public domain W3C validator