MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgval Structured version   Unicode version

Theorem efgval 17057
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
Assertion
Ref Expression
efgval  |-  .~  =  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }
Distinct variable groups:    y, r,
z, n, x, W    .~ , r, x, y, z   
n, I, r, x, y, z
Allowed substitution hint:    .~ ( n)

Proof of Theorem efgval
Dummy variables  i  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.r . 2  |-  .~  =  ( ~FG  `  I )
2 vex 3061 . . . . . . . . . . . 12  |-  i  e. 
_V
3 2on 7174 . . . . . . . . . . . . 13  |-  2o  e.  On
43elexi 3068 . . . . . . . . . . . 12  |-  2o  e.  _V
52, 4xpex 6585 . . . . . . . . . . 11  |-  ( i  X.  2o )  e. 
_V
6 wrdexg 12607 . . . . . . . . . . 11  |-  ( ( i  X.  2o )  e.  _V  -> Word  ( i  X.  2o )  e. 
_V )
7 fvi 5905 . . . . . . . . . . 11  |-  (Word  (
i  X.  2o )  e.  _V  ->  (  _I  ` Word  ( i  X.  2o ) )  = Word  ( i  X.  2o ) )
85, 6, 7mp2b 10 . . . . . . . . . 10  |-  (  _I 
` Word  ( i  X.  2o ) )  = Word  ( i  X.  2o )
9 xpeq1 4836 . . . . . . . . . . . 12  |-  ( i  =  I  ->  (
i  X.  2o )  =  ( I  X.  2o ) )
10 wrdeq 12614 . . . . . . . . . . . 12  |-  ( ( i  X.  2o )  =  ( I  X.  2o )  -> Word  ( i  X.  2o )  = Word  ( I  X.  2o ) )
119, 10syl 17 . . . . . . . . . . 11  |-  ( i  =  I  -> Word  ( i  X.  2o )  = Word  ( I  X.  2o ) )
1211fveq2d 5852 . . . . . . . . . 10  |-  ( i  =  I  ->  (  _I  ` Word  ( i  X.  2o ) )  =  (  _I  ` Word  ( I  X.  2o ) ) )
138, 12syl5eqr 2457 . . . . . . . . 9  |-  ( i  =  I  -> Word  ( i  X.  2o )  =  (  _I  ` Word  ( I  X.  2o ) ) )
14 efgval.w . . . . . . . . 9  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
1513, 14syl6eqr 2461 . . . . . . . 8  |-  ( i  =  I  -> Word  ( i  X.  2o )  =  W )
16 ereq2 7355 . . . . . . . 8  |-  (Word  (
i  X.  2o )  =  W  ->  (
r  Er Word  ( i  X.  2o )  <->  r  Er  W ) )
1715, 16syl 17 . . . . . . 7  |-  ( i  =  I  ->  (
r  Er Word  ( i  X.  2o )  <->  r  Er  W ) )
18 raleq 3003 . . . . . . . . 9  |-  ( i  =  I  ->  ( A. y  e.  i  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )  <->  A. y  e.  I  A. z  e.  2o  x
r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) )
1918ralbidv 2842 . . . . . . . 8  |-  ( i  =  I  ->  ( A. n  e.  (
0 ... ( # `  x
) ) A. y  e.  i  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
)  <->  A. n  e.  ( 0 ... ( # `  x ) ) A. y  e.  I  A. z  e.  2o  x
r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) )
2015, 19raleqbidv 3017 . . . . . . 7  |-  ( i  =  I  ->  ( A. x  e. Word  ( i  X.  2o ) A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  i  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
)  <->  A. x  e.  W  A. n  e.  (
0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) )
2117, 20anbi12d 709 . . . . . 6  |-  ( i  =  I  ->  (
( r  Er Word  (
i  X.  2o )  /\  A. x  e. Word 
( i  X.  2o ) A. n  e.  ( 0 ... ( # `  x ) ) A. y  e.  i  A. z  e.  2o  x
r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) )  <->  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) ) )
2221abbidv 2538 . . . . 5  |-  ( i  =  I  ->  { r  |  ( r  Er Word 
( i  X.  2o )  /\  A. x  e. Word 
( i  X.  2o ) A. n  e.  ( 0 ... ( # `  x ) ) A. y  e.  i  A. z  e.  2o  x
r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  =  { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) } )
2322inteqd 4231 . . . 4  |-  ( i  =  I  ->  |^| { r  |  ( r  Er Word 
( i  X.  2o )  /\  A. x  e. Word 
( i  X.  2o ) A. n  e.  ( 0 ... ( # `  x ) ) A. y  e.  i  A. z  e.  2o  x
r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  =  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) } )
24 df-efg 17049 . . . 4  |- ~FG  =  ( i  e.  _V  |->  |^| { r  |  ( r  Er Word  (
i  X.  2o )  /\  A. x  e. Word 
( i  X.  2o ) A. n  e.  ( 0 ... ( # `  x ) ) A. y  e.  i  A. z  e.  2o  x
r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) } )
2514efglem 17056 . . . . 5  |-  E. r
( r  Er  W  /\  A. x  e.  W  A. n  e.  (
0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) )
26 intexab 4551 . . . . 5  |-  ( E. r ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
)  <->  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  (
0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  e.  _V )
2725, 26mpbi 208 . . . 4  |-  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) }  e.  _V
2823, 24, 27fvmpt 5931 . . 3  |-  ( I  e.  _V  ->  ( ~FG  `  I
)  =  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) } )
29 fvprc 5842 . . . 4  |-  ( -.  I  e.  _V  ->  ( ~FG  `  I )  =  (/) )
30 abn0 3757 . . . . . . . 8  |-  ( { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  =/=  (/)  <->  E. r ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) )
3125, 30mpbir 209 . . . . . . 7  |-  { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) }  =/=  (/)
32 intssuni 4249 . . . . . . 7  |-  ( { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  =/=  (/) 
->  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  (
0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  C_  U. { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) } )
3331, 32ax-mp 5 . . . . . 6  |-  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) }  C_  U. {
r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }
34 erssxp 7370 . . . . . . . . . . . 12  |-  ( r  Er  W  ->  r  C_  ( W  X.  W
) )
3514efgrcl 17055 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  W  ->  (
I  e.  _V  /\  W  = Word  ( I  X.  2o ) ) )
3635simpld 457 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  W  ->  I  e.  _V )
3736con3i 135 . . . . . . . . . . . . . . . 16  |-  ( -.  I  e.  _V  ->  -.  x  e.  W )
3837eq0rdv 3773 . . . . . . . . . . . . . . 15  |-  ( -.  I  e.  _V  ->  W  =  (/) )
3938xpeq2d 4846 . . . . . . . . . . . . . 14  |-  ( -.  I  e.  _V  ->  ( W  X.  W )  =  ( W  X.  (/) ) )
40 xp0 5242 . . . . . . . . . . . . . 14  |-  ( W  X.  (/) )  =  (/)
4139, 40syl6eq 2459 . . . . . . . . . . . . 13  |-  ( -.  I  e.  _V  ->  ( W  X.  W )  =  (/) )
42 ss0b 3768 . . . . . . . . . . . . 13  |-  ( ( W  X.  W ) 
C_  (/)  <->  ( W  X.  W )  =  (/) )
4341, 42sylibr 212 . . . . . . . . . . . 12  |-  ( -.  I  e.  _V  ->  ( W  X.  W ) 
C_  (/) )
4434, 43sylan9ssr 3455 . . . . . . . . . . 11  |-  ( ( -.  I  e.  _V  /\  r  Er  W )  ->  r  C_  (/) )
4544ex 432 . . . . . . . . . 10  |-  ( -.  I  e.  _V  ->  ( r  Er  W  -> 
r  C_  (/) ) )
4645adantrd 466 . . . . . . . . 9  |-  ( -.  I  e.  _V  ->  ( ( r  Er  W  /\  A. x  e.  W  A. n  e.  (
0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) )  ->  r  C_  (/) ) )
4746alrimiv 1740 . . . . . . . 8  |-  ( -.  I  e.  _V  ->  A. r ( ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) )  ->  r  C_  (/) ) )
48 sseq1 3462 . . . . . . . . 9  |-  ( w  =  r  ->  (
w  C_  (/)  <->  r  C_  (/) ) )
4948ralab2 3213 . . . . . . . 8  |-  ( A. w  e.  { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) } w  C_  (/)  <->  A. r ( ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) )  ->  r  C_  (/) ) )
5047, 49sylibr 212 . . . . . . 7  |-  ( -.  I  e.  _V  ->  A. w  e.  { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) } w  C_  (/) )
51 unissb 4221 . . . . . . 7  |-  ( U. { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  C_  (/)  <->  A. w  e.  { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) } w  C_  (/) )
5250, 51sylibr 212 . . . . . 6  |-  ( -.  I  e.  _V  ->  U. { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  C_  (/) )
5333, 52syl5ss 3452 . . . . 5  |-  ( -.  I  e.  _V  ->  |^|
{ r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  C_  (/) )
54 ss0 3769 . . . . 5  |-  ( |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  C_  (/) 
->  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  (
0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  =  (/) )
5553, 54syl 17 . . . 4  |-  ( -.  I  e.  _V  ->  |^|
{ r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }  =  (/) )
5629, 55eqtr4d 2446 . . 3  |-  ( -.  I  e.  _V  ->  ( ~FG  `  I )  =  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) } )
5728, 56pm2.61i 164 . 2  |-  ( ~FG  `  I
)  =  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) }
581, 57eqtri 2431 1  |-  .~  =  |^| { r  |  ( r  Er  W  /\  A. x  e.  W  A. n  e.  ( 0 ... ( # `  x
) ) A. y  e.  I  A. z  e.  2o  x r ( x splice  <. n ,  n ,  <" <. y ,  z >. <. y ,  ( 1o  \ 
z ) >. "> >.
) ) }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1403    = wceq 1405   E.wex 1633    e. wcel 1842   {cab 2387    =/= wne 2598   A.wral 2753   _Vcvv 3058    \ cdif 3410    C_ wss 3413   (/)c0 3737   <.cop 3977   <.cotp 3979   U.cuni 4190   |^|cint 4226   class class class wbr 4394    _I cid 4732    X. cxp 4820   Oncon0 5409   ` cfv 5568  (class class class)co 6277   1oc1o 7159   2oc2o 7160    Er wer 7344   0cc0 9521   ...cfz 11724   #chash 12450  Word cword 12581   splice csplice 12586   <"cs2 12860   ~FG cefg 17046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-ot 3980  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-2o 7167  df-oadd 7170  df-er 7347  df-map 7458  df-pm 7459  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-card 8351  df-cda 8579  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-nn 10576  df-2 10634  df-n0 10836  df-z 10905  df-uz 11127  df-fz 11725  df-fzo 11853  df-hash 12451  df-word 12589  df-concat 12591  df-s1 12592  df-substr 12593  df-splice 12594  df-s2 12867  df-efg 17049
This theorem is referenced by:  efger  17058  efgi  17059  efgval2  17064  frgpuplem  17112
  Copyright terms: Public domain W3C validator