MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgtlen Structured version   Unicode version

Theorem efgtlen 16238
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
Assertion
Ref Expression
efgtlen  |-  ( ( X  e.  W  /\  A  e.  ran  ( T `
 X ) )  ->  ( # `  A
)  =  ( (
# `  X )  +  2 ) )
Distinct variable groups:    y, z    v, n, w, y, z   
n, M, v, w   
n, W, v, w, y, z    y,  .~ , z    n, I, v, w, y, z
Allowed substitution hints:    A( y, z, w, v, n)    .~ ( w, v, n)    T( y, z, w, v, n)    M( y, z)    X( y, z, w, v, n)

Proof of Theorem efgtlen
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . . . . . . 8  |-  .~  =  ( ~FG  `  I )
3 efgval2.m . . . . . . . 8  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4 efgval2.t . . . . . . . 8  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
51, 2, 3, 4efgtf 16234 . . . . . . 7  |-  ( X  e.  W  ->  (
( T `  X
)  =  ( a  e.  ( 0 ... ( # `  X
) ) ,  b  e.  ( I  X.  2o )  |->  ( X splice  <. a ,  a , 
<" b ( M `
 b ) "> >. ) )  /\  ( T `  X ) : ( ( 0 ... ( # `  X
) )  X.  (
I  X.  2o ) ) --> W ) )
65simpld 459 . . . . . 6  |-  ( X  e.  W  ->  ( T `  X )  =  ( a  e.  ( 0 ... ( # `
 X ) ) ,  b  e.  ( I  X.  2o ) 
|->  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >.
) ) )
76rneqd 5082 . . . . 5  |-  ( X  e.  W  ->  ran  ( T `  X )  =  ran  ( a  e.  ( 0 ... ( # `  X
) ) ,  b  e.  ( I  X.  2o )  |->  ( X splice  <. a ,  a , 
<" b ( M `
 b ) "> >. ) ) )
87eleq2d 2510 . . . 4  |-  ( X  e.  W  ->  ( A  e.  ran  ( T `
 X )  <->  A  e.  ran  ( a  e.  ( 0 ... ( # `  X ) ) ,  b  e.  ( I  X.  2o )  |->  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >. )
) ) )
9 eqid 2443 . . . . 5  |-  ( a  e.  ( 0 ... ( # `  X
) ) ,  b  e.  ( I  X.  2o )  |->  ( X splice  <. a ,  a , 
<" b ( M `
 b ) "> >. ) )  =  ( a  e.  ( 0 ... ( # `  X ) ) ,  b  e.  ( I  X.  2o )  |->  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >. )
)
10 ovex 6131 . . . . 5  |-  ( X splice  <. a ,  a , 
<" b ( M `
 b ) "> >. )  e.  _V
119, 10elrnmpt2 6218 . . . 4  |-  ( A  e.  ran  ( a  e.  ( 0 ... ( # `  X
) ) ,  b  e.  ( I  X.  2o )  |->  ( X splice  <. a ,  a , 
<" b ( M `
 b ) "> >. ) )  <->  E. a  e.  ( 0 ... ( # `
 X ) ) E. b  e.  ( I  X.  2o ) A  =  ( X splice  <. a ,  a , 
<" b ( M `
 b ) "> >. ) )
128, 11syl6bb 261 . . 3  |-  ( X  e.  W  ->  ( A  e.  ran  ( T `
 X )  <->  E. a  e.  ( 0 ... ( # `
 X ) ) E. b  e.  ( I  X.  2o ) A  =  ( X splice  <. a ,  a , 
<" b ( M `
 b ) "> >. ) ) )
13 fviss 5764 . . . . . . . . 9  |-  (  _I 
` Word  ( I  X.  2o ) )  C_ Word  ( I  X.  2o )
141, 13eqsstri 3401 . . . . . . . 8  |-  W  C_ Word  ( I  X.  2o )
15 simpl 457 . . . . . . . 8  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  X  e.  W
)
1614, 15sseldi 3369 . . . . . . 7  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  X  e. Word  (
I  X.  2o ) )
17 elfzuz 11464 . . . . . . . . 9  |-  ( a  e.  ( 0 ... ( # `  X
) )  ->  a  e.  ( ZZ>= `  0 )
)
1817ad2antrl 727 . . . . . . . 8  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  e.  (
ZZ>= `  0 ) )
19 eluzfz2b 11475 . . . . . . . 8  |-  ( a  e.  ( ZZ>= `  0
)  <->  a  e.  ( 0 ... a ) )
2018, 19sylib 196 . . . . . . 7  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  e.  ( 0 ... a ) )
21 simprl 755 . . . . . . 7  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  e.  ( 0 ... ( # `  X ) ) )
22 simprr 756 . . . . . . . 8  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  b  e.  ( I  X.  2o ) )
233efgmf 16225 . . . . . . . . . 10  |-  M :
( I  X.  2o )
--> ( I  X.  2o )
2423ffvelrni 5857 . . . . . . . . 9  |-  ( b  e.  ( I  X.  2o )  ->  ( M `
 b )  e.  ( I  X.  2o ) )
2522, 24syl 16 . . . . . . . 8  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M `  b )  e.  ( I  X.  2o ) )
2622, 25s2cld 12511 . . . . . . 7  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  <" b ( M `  b ) ">  e. Word  (
I  X.  2o ) )
2716, 20, 21, 26spllen 12411 . . . . . 6  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >. )
)  =  ( (
# `  X )  +  ( ( # `  <" b ( M `  b ) "> )  -  ( a  -  a
) ) ) )
28 s2len 12529 . . . . . . . . . 10  |-  ( # `  <" b ( M `  b ) "> )  =  2
2928a1i 11 . . . . . . . . 9  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `  <" b ( M `  b ) "> )  =  2 )
30 eluzelz 10885 . . . . . . . . . . . 12  |-  ( a  e.  ( ZZ>= `  0
)  ->  a  e.  ZZ )
3130zcnd 10763 . . . . . . . . . . 11  |-  ( a  e.  ( ZZ>= `  0
)  ->  a  e.  CC )
3218, 31syl 16 . . . . . . . . . 10  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  e.  CC )
3332subidd 9722 . . . . . . . . 9  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( a  -  a )  =  0 )
3429, 33oveq12d 6124 . . . . . . . 8  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( ( # `  <" b ( M `  b ) "> )  -  ( a  -  a
) )  =  ( 2  -  0 ) )
35 2cn 10407 . . . . . . . . 9  |-  2  e.  CC
3635subid1i 9695 . . . . . . . 8  |-  ( 2  -  0 )  =  2
3734, 36syl6eq 2491 . . . . . . 7  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( ( # `  <" b ( M `  b ) "> )  -  ( a  -  a
) )  =  2 )
3837oveq2d 6122 . . . . . 6  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( ( # `  X )  +  ( ( # `  <" b ( M `  b ) "> )  -  ( a  -  a ) ) )  =  ( (
# `  X )  +  2 ) )
3927, 38eqtrd 2475 . . . . 5  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >. )
)  =  ( (
# `  X )  +  2 ) )
40 fveq2 5706 . . . . . 6  |-  ( A  =  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >.
)  ->  ( # `  A
)  =  ( # `  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >.
) ) )
4140eqeq1d 2451 . . . . 5  |-  ( A  =  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >.
)  ->  ( ( # `
 A )  =  ( ( # `  X
)  +  2 )  <-> 
( # `  ( X splice  <. a ,  a , 
<" b ( M `
 b ) "> >. ) )  =  ( ( # `  X
)  +  2 ) ) )
4239, 41syl5ibrcom 222 . . . 4  |-  ( ( X  e.  W  /\  ( a  e.  ( 0 ... ( # `  X ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( A  =  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >.
)  ->  ( # `  A
)  =  ( (
# `  X )  +  2 ) ) )
4342rexlimdvva 2863 . . 3  |-  ( X  e.  W  ->  ( E. a  e.  (
0 ... ( # `  X
) ) E. b  e.  ( I  X.  2o ) A  =  ( X splice  <. a ,  a ,  <" b ( M `  b ) "> >. )  ->  ( # `  A
)  =  ( (
# `  X )  +  2 ) ) )
4412, 43sylbid 215 . 2  |-  ( X  e.  W  ->  ( A  e.  ran  ( T `
 X )  -> 
( # `  A )  =  ( ( # `  X )  +  2 ) ) )
4544imp 429 1  |-  ( ( X  e.  W  /\  A  e.  ran  ( T `
 X ) )  ->  ( # `  A
)  =  ( (
# `  X )  +  2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2731    \ cdif 3340   <.cop 3898   <.cotp 3900    e. cmpt 4365    _I cid 4646    X. cxp 4853   ran crn 4856   -->wf 5429   ` cfv 5433  (class class class)co 6106    e. cmpt2 6108   1oc1o 6928   2oc2o 6929   CCcc 9295   0cc0 9297    + caddc 9300    - cmin 9610   2c2 10386   ZZ>=cuz 10876   ...cfz 11452   #chash 12118  Word cword 12236   splice csplice 12241   <"cs2 12483   ~FG cefg 16218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-cnex 9353  ax-resscn 9354  ax-1cn 9355  ax-icn 9356  ax-addcl 9357  ax-addrcl 9358  ax-mulcl 9359  ax-mulrcl 9360  ax-mulcom 9361  ax-addass 9362  ax-mulass 9363  ax-distr 9364  ax-i2m1 9365  ax-1ne0 9366  ax-1rid 9367  ax-rnegex 9368  ax-rrecex 9369  ax-cnre 9370  ax-pre-lttri 9371  ax-pre-lttrn 9372  ax-pre-ltadd 9373  ax-pre-mulgt0 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-ot 3901  df-uni 4107  df-int 4144  df-iun 4188  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-riota 6067  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-om 6492  df-1st 6592  df-2nd 6593  df-recs 6847  df-rdg 6881  df-1o 6935  df-2o 6936  df-oadd 6939  df-er 7116  df-map 7231  df-pm 7232  df-en 7326  df-dom 7327  df-sdom 7328  df-fin 7329  df-card 8124  df-pnf 9435  df-mnf 9436  df-xr 9437  df-ltxr 9438  df-le 9439  df-sub 9612  df-neg 9613  df-nn 10338  df-2 10395  df-n0 10595  df-z 10662  df-uz 10877  df-fz 11453  df-fzo 11564  df-hash 12119  df-word 12244  df-concat 12246  df-s1 12247  df-substr 12248  df-splice 12249  df-s2 12490
This theorem is referenced by:  efgsfo  16251  efgredlemg  16254  efgredlemd  16256  efgredlem  16259  frgpnabllem1  16366
  Copyright terms: Public domain W3C validator