MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsrel Structured version   Unicode version

Theorem efgsrel 16231
Description: The start and end of any extension sequence are related (i.e. evaluate to the same element of the quotient group to be created). (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgsrel  |-  ( F  e.  dom  S  -> 
( F `  0
)  .~  ( S `  F ) )
Distinct variable groups:    y, z    t, n, v, w, y, z, m, x    m, M    x, n, M, t, v, w    k, m, t, x, T    k, n, v, w, y, z, W, m, t, x    .~ , m, t, x, y, z    m, I, n, t, v, w, x, y, z    D, m, t
Allowed substitution hints:    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y,
z, w, v, n)    F( x, y, z, w, v, t, k, m, n)    I( k)    M( y, z, k)

Proof of Theorem efgsrel
Dummy variables  a 
i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . 6  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . . . . 6  |-  .~  =  ( ~FG  `  I )
3 efgval2.m . . . . . 6  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4 efgval2.t . . . . . 6  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
5 efgred.d . . . . . 6  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
6 efgred.s . . . . . 6  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
71, 2, 3, 4, 5, 6efgsdm 16227 . . . . 5  |-  ( F  e.  dom  S  <->  ( F  e.  (Word  W  \  { (/)
} )  /\  ( F `  0 )  e.  D  /\  A. a  e.  ( 1..^ ( # `  F ) ) ( F `  a )  e.  ran  ( T `
 ( F `  ( a  -  1 ) ) ) ) )
87simp1bi 1003 . . . 4  |-  ( F  e.  dom  S  ->  F  e.  (Word  W  \  { (/) } ) )
9 eldifsn 4000 . . . . 5  |-  ( F  e.  (Word  W  \  { (/) } )  <->  ( F  e. Word  W  /\  F  =/=  (/) ) )
10 lennncl 12250 . . . . 5  |-  ( ( F  e. Word  W  /\  F  =/=  (/) )  ->  ( # `
 F )  e.  NN )
119, 10sylbi 195 . . . 4  |-  ( F  e.  (Word  W  \  { (/) } )  -> 
( # `  F )  e.  NN )
12 fzo0end 11619 . . . 4  |-  ( (
# `  F )  e.  NN  ->  ( ( # `
 F )  - 
1 )  e.  ( 0..^ ( # `  F
) ) )
138, 11, 123syl 20 . . 3  |-  ( F  e.  dom  S  -> 
( ( # `  F
)  -  1 )  e.  ( 0..^ (
# `  F )
) )
14 nnm1nn0 10621 . . . . 5  |-  ( (
# `  F )  e.  NN  ->  ( ( # `
 F )  - 
1 )  e.  NN0 )
158, 11, 143syl 20 . . . 4  |-  ( F  e.  dom  S  -> 
( ( # `  F
)  -  1 )  e.  NN0 )
16 eleq1 2503 . . . . . . 7  |-  ( a  =  0  ->  (
a  e.  ( 0..^ ( # `  F
) )  <->  0  e.  ( 0..^ ( # `  F
) ) ) )
17 fveq2 5691 . . . . . . . 8  |-  ( a  =  0  ->  ( F `  a )  =  ( F ` 
0 ) )
1817breq2d 4304 . . . . . . 7  |-  ( a  =  0  ->  (
( F `  0
)  .~  ( F `  a )  <->  ( F `  0 )  .~  ( F `  0 ) ) )
1916, 18imbi12d 320 . . . . . 6  |-  ( a  =  0  ->  (
( a  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  a
) )  <->  ( 0  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  0 ) ) ) )
2019imbi2d 316 . . . . 5  |-  ( a  =  0  ->  (
( F  e.  dom  S  ->  ( a  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  a ) ) )  <-> 
( F  e.  dom  S  ->  ( 0  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  0 ) ) ) ) )
21 eleq1 2503 . . . . . . 7  |-  ( a  =  i  ->  (
a  e.  ( 0..^ ( # `  F
) )  <->  i  e.  ( 0..^ ( # `  F
) ) ) )
22 fveq2 5691 . . . . . . . 8  |-  ( a  =  i  ->  ( F `  a )  =  ( F `  i ) )
2322breq2d 4304 . . . . . . 7  |-  ( a  =  i  ->  (
( F `  0
)  .~  ( F `  a )  <->  ( F `  0 )  .~  ( F `  i ) ) )
2421, 23imbi12d 320 . . . . . 6  |-  ( a  =  i  ->  (
( a  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  a
) )  <->  ( i  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  i ) ) ) )
2524imbi2d 316 . . . . 5  |-  ( a  =  i  ->  (
( F  e.  dom  S  ->  ( a  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  a ) ) )  <-> 
( F  e.  dom  S  ->  ( i  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  i ) ) ) ) )
26 eleq1 2503 . . . . . . 7  |-  ( a  =  ( i  +  1 )  ->  (
a  e.  ( 0..^ ( # `  F
) )  <->  ( i  +  1 )  e.  ( 0..^ ( # `  F ) ) ) )
27 fveq2 5691 . . . . . . . 8  |-  ( a  =  ( i  +  1 )  ->  ( F `  a )  =  ( F `  ( i  +  1 ) ) )
2827breq2d 4304 . . . . . . 7  |-  ( a  =  ( i  +  1 )  ->  (
( F `  0
)  .~  ( F `  a )  <->  ( F `  0 )  .~  ( F `  ( i  +  1 ) ) ) )
2926, 28imbi12d 320 . . . . . 6  |-  ( a  =  ( i  +  1 )  ->  (
( a  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  a
) )  <->  ( (
i  +  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  ( i  +  1 ) ) ) ) )
3029imbi2d 316 . . . . 5  |-  ( a  =  ( i  +  1 )  ->  (
( F  e.  dom  S  ->  ( a  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  a ) ) )  <-> 
( F  e.  dom  S  ->  ( ( i  +  1 )  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  ( i  +  1 ) ) ) ) ) )
31 eleq1 2503 . . . . . . 7  |-  ( a  =  ( ( # `  F )  -  1 )  ->  ( a  e.  ( 0..^ ( # `  F ) )  <->  ( ( # `
 F )  - 
1 )  e.  ( 0..^ ( # `  F
) ) ) )
32 fveq2 5691 . . . . . . . 8  |-  ( a  =  ( ( # `  F )  -  1 )  ->  ( F `  a )  =  ( F `  ( (
# `  F )  -  1 ) ) )
3332breq2d 4304 . . . . . . 7  |-  ( a  =  ( ( # `  F )  -  1 )  ->  ( ( F `  0 )  .~  ( F `  a
)  <->  ( F ` 
0 )  .~  ( F `  ( ( # `
 F )  - 
1 ) ) ) )
3431, 33imbi12d 320 . . . . . 6  |-  ( a  =  ( ( # `  F )  -  1 )  ->  ( (
a  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  a
) )  <->  ( (
( # `  F )  -  1 )  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  ( ( # `  F
)  -  1 ) ) ) ) )
3534imbi2d 316 . . . . 5  |-  ( a  =  ( ( # `  F )  -  1 )  ->  ( ( F  e.  dom  S  -> 
( a  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  a
) ) )  <->  ( F  e.  dom  S  ->  (
( ( # `  F
)  -  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  ( (
# `  F )  -  1 ) ) ) ) ) )
361, 2efger 16215 . . . . . . . 8  |-  .~  Er  W
3736a1i 11 . . . . . . 7  |-  ( ( F  e.  dom  S  /\  0  e.  (
0..^ ( # `  F
) ) )  ->  .~  Er  W )
38 eldifi 3478 . . . . . . . . 9  |-  ( F  e.  (Word  W  \  { (/) } )  ->  F  e. Word  W )
39 wrdf 12240 . . . . . . . . 9  |-  ( F  e. Word  W  ->  F : ( 0..^ (
# `  F )
) --> W )
408, 38, 393syl 20 . . . . . . . 8  |-  ( F  e.  dom  S  ->  F : ( 0..^ (
# `  F )
) --> W )
4140ffvelrnda 5843 . . . . . . 7  |-  ( ( F  e.  dom  S  /\  0  e.  (
0..^ ( # `  F
) ) )  -> 
( F `  0
)  e.  W )
4237, 41erref 7121 . . . . . 6  |-  ( ( F  e.  dom  S  /\  0  e.  (
0..^ ( # `  F
) ) )  -> 
( F `  0
)  .~  ( F `  0 ) )
4342ex 434 . . . . 5  |-  ( F  e.  dom  S  -> 
( 0  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  0
) ) )
44 elnn0uz 10898 . . . . . . . . . . . 12  |-  ( i  e.  NN0  <->  i  e.  (
ZZ>= `  0 ) )
45 peano2fzor 11632 . . . . . . . . . . . 12  |-  ( ( i  e.  ( ZZ>= ` 
0 )  /\  (
i  +  1 )  e.  ( 0..^ (
# `  F )
) )  ->  i  e.  ( 0..^ ( # `  F ) ) )
4644, 45sylanb 472 . . . . . . . . . . 11  |-  ( ( i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
i  e.  ( 0..^ ( # `  F
) ) )
47463adant1 1006 . . . . . . . . . 10  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
i  e.  ( 0..^ ( # `  F
) ) )
48473expia 1189 . . . . . . . . 9  |-  ( ( F  e.  dom  S  /\  i  e.  NN0 )  ->  ( ( i  +  1 )  e.  ( 0..^ ( # `  F ) )  -> 
i  e.  ( 0..^ ( # `  F
) ) ) )
4948imim1d 75 . . . . . . . 8  |-  ( ( F  e.  dom  S  /\  i  e.  NN0 )  ->  ( ( i  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  i ) )  ->  ( (
i  +  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  i ) ) ) )
50403ad2ant1 1009 . . . . . . . . . . . . 13  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  ->  F : ( 0..^ (
# `  F )
) --> W )
5150, 47ffvelrnd 5844 . . . . . . . . . . . 12  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( F `  i
)  e.  W )
52 nn0p1nn 10619 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  NN0  ->  ( i  +  1 )  e.  NN )
53523ad2ant2 1010 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( i  +  1 )  e.  NN )
54 nnuz 10896 . . . . . . . . . . . . . . . 16  |-  NN  =  ( ZZ>= `  1 )
5553, 54syl6eleq 2533 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( i  +  1 )  e.  ( ZZ>= ` 
1 ) )
56 elfzolt2b 11563 . . . . . . . . . . . . . . . 16  |-  ( ( i  +  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( i  +  1 )  e.  ( ( i  +  1 )..^ ( # `  F ) ) )
57563ad2ant3 1011 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( i  +  1 )  e.  ( ( i  +  1 )..^ ( # `  F
) ) )
58 elfzo3 11568 . . . . . . . . . . . . . . 15  |-  ( ( i  +  1 )  e.  ( 1..^ (
# `  F )
)  <->  ( ( i  +  1 )  e.  ( ZZ>= `  1 )  /\  ( i  +  1 )  e.  ( ( i  +  1 )..^ ( # `  F
) ) ) )
5955, 57, 58sylanbrc 664 . . . . . . . . . . . . . 14  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( i  +  1 )  e.  ( 1..^ ( # `  F
) ) )
607simp3bi 1005 . . . . . . . . . . . . . . 15  |-  ( F  e.  dom  S  ->  A. a  e.  (
1..^ ( # `  F
) ) ( F `
 a )  e. 
ran  ( T `  ( F `  ( a  -  1 ) ) ) )
61603ad2ant1 1009 . . . . . . . . . . . . . 14  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  ->  A. a  e.  (
1..^ ( # `  F
) ) ( F `
 a )  e. 
ran  ( T `  ( F `  ( a  -  1 ) ) ) )
62 oveq1 6098 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  ( i  +  1 )  ->  (
a  -  1 )  =  ( ( i  +  1 )  - 
1 ) )
6362fveq2d 5695 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  ( i  +  1 )  ->  ( F `  ( a  -  1 ) )  =  ( F `  ( ( i  +  1 )  -  1 ) ) )
6463fveq2d 5695 . . . . . . . . . . . . . . . . 17  |-  ( a  =  ( i  +  1 )  ->  ( T `  ( F `  ( a  -  1 ) ) )  =  ( T `  ( F `  ( (
i  +  1 )  -  1 ) ) ) )
6564rneqd 5067 . . . . . . . . . . . . . . . 16  |-  ( a  =  ( i  +  1 )  ->  ran  ( T `  ( F `
 ( a  - 
1 ) ) )  =  ran  ( T `
 ( F `  ( ( i  +  1 )  -  1 ) ) ) )
6627, 65eleq12d 2511 . . . . . . . . . . . . . . 15  |-  ( a  =  ( i  +  1 )  ->  (
( F `  a
)  e.  ran  ( T `  ( F `  ( a  -  1 ) ) )  <->  ( F `  ( i  +  1 ) )  e.  ran  ( T `  ( F `
 ( ( i  +  1 )  - 
1 ) ) ) ) )
6766rspcv 3069 . . . . . . . . . . . . . 14  |-  ( ( i  +  1 )  e.  ( 1..^ (
# `  F )
)  ->  ( A. a  e.  ( 1..^ ( # `  F
) ) ( F `
 a )  e. 
ran  ( T `  ( F `  ( a  -  1 ) ) )  ->  ( F `  ( i  +  1 ) )  e.  ran  ( T `  ( F `
 ( ( i  +  1 )  - 
1 ) ) ) ) )
6859, 61, 67sylc 60 . . . . . . . . . . . . 13  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( F `  (
i  +  1 ) )  e.  ran  ( T `  ( F `  ( ( i  +  1 )  -  1 ) ) ) )
69 nn0cn 10589 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  NN0  ->  i  e.  CC )
70693ad2ant2 1010 . . . . . . . . . . . . . . . . 17  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
i  e.  CC )
71 ax-1cn 9340 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
72 pncan 9616 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  CC  /\  1  e.  CC )  ->  ( ( i  +  1 )  -  1 )  =  i )
7370, 71, 72sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( i  +  1 )  -  1 )  =  i )
7473fveq2d 5695 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( F `  (
( i  +  1 )  -  1 ) )  =  ( F `
 i ) )
7574fveq2d 5695 . . . . . . . . . . . . . 14  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( T `  ( F `  ( (
i  +  1 )  -  1 ) ) )  =  ( T `
 ( F `  i ) ) )
7675rneqd 5067 . . . . . . . . . . . . 13  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  ->  ran  ( T `  ( F `  ( (
i  +  1 )  -  1 ) ) )  =  ran  ( T `  ( F `  i ) ) )
7768, 76eleqtrd 2519 . . . . . . . . . . . 12  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( F `  (
i  +  1 ) )  e.  ran  ( T `  ( F `  i ) ) )
781, 2, 3, 4efgi2 16222 . . . . . . . . . . . 12  |-  ( ( ( F `  i
)  e.  W  /\  ( F `  ( i  +  1 ) )  e.  ran  ( T `
 ( F `  i ) ) )  ->  ( F `  i )  .~  ( F `  ( i  +  1 ) ) )
7951, 77, 78syl2anc 661 . . . . . . . . . . 11  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( F `  i
)  .~  ( F `  ( i  +  1 ) ) )
8036a1i 11 . . . . . . . . . . . 12  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  ->  .~  Er  W )
8180ertr 7116 . . . . . . . . . . 11  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( ( F `
 0 )  .~  ( F `  i )  /\  ( F `  i )  .~  ( F `  ( i  +  1 ) ) )  ->  ( F `  0 )  .~  ( F `  ( i  +  1 ) ) ) )
8279, 81mpan2d 674 . . . . . . . . . 10  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( F ` 
0 )  .~  ( F `  i )  ->  ( F `  0
)  .~  ( F `  ( i  +  1 ) ) ) )
83823expia 1189 . . . . . . . . 9  |-  ( ( F  e.  dom  S  /\  i  e.  NN0 )  ->  ( ( i  +  1 )  e.  ( 0..^ ( # `  F ) )  -> 
( ( F ` 
0 )  .~  ( F `  i )  ->  ( F `  0
)  .~  ( F `  ( i  +  1 ) ) ) ) )
8483a2d 26 . . . . . . . 8  |-  ( ( F  e.  dom  S  /\  i  e.  NN0 )  ->  ( ( ( i  +  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  i ) )  ->  ( (
i  +  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  ( i  +  1 ) ) ) ) )
8549, 84syld 44 . . . . . . 7  |-  ( ( F  e.  dom  S  /\  i  e.  NN0 )  ->  ( ( i  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  i ) )  ->  ( (
i  +  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  ( i  +  1 ) ) ) ) )
8685expcom 435 . . . . . 6  |-  ( i  e.  NN0  ->  ( F  e.  dom  S  -> 
( ( i  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  i ) )  -> 
( ( i  +  1 )  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  (
i  +  1 ) ) ) ) ) )
8786a2d 26 . . . . 5  |-  ( i  e.  NN0  ->  ( ( F  e.  dom  S  ->  ( i  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  i
) ) )  -> 
( F  e.  dom  S  ->  ( ( i  +  1 )  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  ( i  +  1 ) ) ) ) ) )
8820, 25, 30, 35, 43, 87nn0ind 10738 . . . 4  |-  ( ( ( # `  F
)  -  1 )  e.  NN0  ->  ( F  e.  dom  S  -> 
( ( ( # `  F )  -  1 )  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  (
( # `  F )  -  1 ) ) ) ) )
8915, 88mpcom 36 . . 3  |-  ( F  e.  dom  S  -> 
( ( ( # `  F )  -  1 )  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  (
( # `  F )  -  1 ) ) ) )
9013, 89mpd 15 . 2  |-  ( F  e.  dom  S  -> 
( F `  0
)  .~  ( F `  ( ( # `  F
)  -  1 ) ) )
911, 2, 3, 4, 5, 6efgsval 16228 . 2  |-  ( F  e.  dom  S  -> 
( S `  F
)  =  ( F `
 ( ( # `  F )  -  1 ) ) )
9290, 91breqtrrd 4318 1  |-  ( F  e.  dom  S  -> 
( F `  0
)  .~  ( S `  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715   {crab 2719    \ cdif 3325   (/)c0 3637   {csn 3877   <.cop 3883   <.cotp 3885   U_ciun 4171   class class class wbr 4292    e. cmpt 4350    _I cid 4631    X. cxp 4838   dom cdm 4840   ran crn 4841   -->wf 5414   ` cfv 5418  (class class class)co 6091    e. cmpt2 6093   1oc1o 6913   2oc2o 6914    Er wer 7098   CCcc 9280   0cc0 9282   1c1 9283    + caddc 9285    - cmin 9595   NNcn 10322   NN0cn0 10579   ZZ>=cuz 10861   ...cfz 11437  ..^cfzo 11548   #chash 12103  Word cword 12221   splice csplice 12226   <"cs2 12468   ~FG cefg 16203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-ot 3886  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-ec 7103  df-map 7216  df-pm 7217  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-card 8109  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-n0 10580  df-z 10647  df-uz 10862  df-fz 11438  df-fzo 11549  df-hash 12104  df-word 12229  df-concat 12231  df-s1 12232  df-substr 12233  df-splice 12234  df-s2 12475  df-efg 16206
This theorem is referenced by:  efgredeu  16249  efgred2  16250
  Copyright terms: Public domain W3C validator