MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsdm Structured version   Unicode version

Theorem efgsdm 16621
Description: Elementhood in the domain of  S, the set of sequences of extensions starting at an irreducible word. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgsdm  |-  ( F  e.  dom  S  <->  ( F  e.  (Word  W  \  { (/)
} )  /\  ( F `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  F ) ) ( F `  i )  e.  ran  ( T `
 ( F `  ( i  -  1 ) ) ) ) )
Distinct variable groups:    y, z    i, F    t, n, v, w, y, z    i, m, n, t, v, w, x, M    i, k, T, m, t, x    y,
i, z, W    k, n, v, w, y, z, W, m, t, x    .~ , i, m, t, x, y, z    S, i   
i, I, m, n, t, v, w, x, y, z    D, i, m, t
Allowed substitution hints:    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y,
z, w, v, n)    F( x, y, z, w, v, t, k, m, n)    I( k)    M( y, z, k)

Proof of Theorem efgsdm
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fveq1 5871 . . . . 5  |-  ( f  =  F  ->  (
f `  0 )  =  ( F ` 
0 ) )
21eleq1d 2536 . . . 4  |-  ( f  =  F  ->  (
( f `  0
)  e.  D  <->  ( F `  0 )  e.  D ) )
3 fveq2 5872 . . . . . 6  |-  ( f  =  F  ->  ( # `
 f )  =  ( # `  F
) )
43oveq2d 6311 . . . . 5  |-  ( f  =  F  ->  (
1..^ ( # `  f
) )  =  ( 1..^ ( # `  F
) ) )
5 fveq1 5871 . . . . . 6  |-  ( f  =  F  ->  (
f `  i )  =  ( F `  i ) )
6 fveq1 5871 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  ( i  -  1 ) )  =  ( F `  ( i  -  1 ) ) )
76fveq2d 5876 . . . . . . 7  |-  ( f  =  F  ->  ( T `  ( f `  ( i  -  1 ) ) )  =  ( T `  ( F `  ( i  -  1 ) ) ) )
87rneqd 5236 . . . . . 6  |-  ( f  =  F  ->  ran  ( T `  ( f `
 ( i  - 
1 ) ) )  =  ran  ( T `
 ( F `  ( i  -  1 ) ) ) )
95, 8eleq12d 2549 . . . . 5  |-  ( f  =  F  ->  (
( f `  i
)  e.  ran  ( T `  ( f `  ( i  -  1 ) ) )  <->  ( F `  i )  e.  ran  ( T `  ( F `
 ( i  - 
1 ) ) ) ) )
104, 9raleqbidv 3077 . . . 4  |-  ( f  =  F  ->  ( A. i  e.  (
1..^ ( # `  f
) ) ( f `
 i )  e. 
ran  ( T `  ( f `  (
i  -  1 ) ) )  <->  A. i  e.  ( 1..^ ( # `  F ) ) ( F `  i )  e.  ran  ( T `
 ( F `  ( i  -  1 ) ) ) ) )
112, 10anbi12d 710 . . 3  |-  ( f  =  F  ->  (
( ( f ` 
0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  f
) ) ( f `
 i )  e. 
ran  ( T `  ( f `  (
i  -  1 ) ) ) )  <->  ( ( F `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  F ) ) ( F `  i )  e.  ran  ( T `
 ( F `  ( i  -  1 ) ) ) ) ) )
12 efgval.w . . . . . 6  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
13 efgval.r . . . . . 6  |-  .~  =  ( ~FG  `  I )
14 efgval2.m . . . . . 6  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
15 efgval2.t . . . . . 6  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
16 efgred.d . . . . . 6  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
17 efgred.s . . . . . 6  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
1812, 13, 14, 15, 16, 17efgsf 16620 . . . . 5  |-  S : { t  e.  (Word 
W  \  { (/) } )  |  ( ( t `
 0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t ) ) ( t `  k )  e.  ran  ( T `
 ( t `  ( k  -  1 ) ) ) ) } --> W
1918fdmi 5742 . . . 4  |-  dom  S  =  { t  e.  (Word 
W  \  { (/) } )  |  ( ( t `
 0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t ) ) ( t `  k )  e.  ran  ( T `
 ( t `  ( k  -  1 ) ) ) ) }
20 fveq1 5871 . . . . . . 7  |-  ( t  =  f  ->  (
t `  0 )  =  ( f ` 
0 ) )
2120eleq1d 2536 . . . . . 6  |-  ( t  =  f  ->  (
( t `  0
)  e.  D  <->  ( f `  0 )  e.  D ) )
22 fveq2 5872 . . . . . . . . 9  |-  ( k  =  i  ->  (
t `  k )  =  ( t `  i ) )
23 oveq1 6302 . . . . . . . . . . . 12  |-  ( k  =  i  ->  (
k  -  1 )  =  ( i  - 
1 ) )
2423fveq2d 5876 . . . . . . . . . . 11  |-  ( k  =  i  ->  (
t `  ( k  -  1 ) )  =  ( t `  ( i  -  1 ) ) )
2524fveq2d 5876 . . . . . . . . . 10  |-  ( k  =  i  ->  ( T `  ( t `  ( k  -  1 ) ) )  =  ( T `  (
t `  ( i  -  1 ) ) ) )
2625rneqd 5236 . . . . . . . . 9  |-  ( k  =  i  ->  ran  ( T `  ( t `
 ( k  - 
1 ) ) )  =  ran  ( T `
 ( t `  ( i  -  1 ) ) ) )
2722, 26eleq12d 2549 . . . . . . . 8  |-  ( k  =  i  ->  (
( t `  k
)  e.  ran  ( T `  ( t `  ( k  -  1 ) ) )  <->  ( t `  i )  e.  ran  ( T `  ( t `
 ( i  - 
1 ) ) ) ) )
2827cbvralv 3093 . . . . . . 7  |-  ( A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) )  <->  A. i  e.  ( 1..^ ( # `  t ) ) ( t `  i )  e.  ran  ( T `
 ( t `  ( i  -  1 ) ) ) )
29 fveq2 5872 . . . . . . . . 9  |-  ( t  =  f  ->  ( # `
 t )  =  ( # `  f
) )
3029oveq2d 6311 . . . . . . . 8  |-  ( t  =  f  ->  (
1..^ ( # `  t
) )  =  ( 1..^ ( # `  f
) ) )
31 fveq1 5871 . . . . . . . . 9  |-  ( t  =  f  ->  (
t `  i )  =  ( f `  i ) )
32 fveq1 5871 . . . . . . . . . . 11  |-  ( t  =  f  ->  (
t `  ( i  -  1 ) )  =  ( f `  ( i  -  1 ) ) )
3332fveq2d 5876 . . . . . . . . . 10  |-  ( t  =  f  ->  ( T `  ( t `  ( i  -  1 ) ) )  =  ( T `  (
f `  ( i  -  1 ) ) ) )
3433rneqd 5236 . . . . . . . . 9  |-  ( t  =  f  ->  ran  ( T `  ( t `
 ( i  - 
1 ) ) )  =  ran  ( T `
 ( f `  ( i  -  1 ) ) ) )
3531, 34eleq12d 2549 . . . . . . . 8  |-  ( t  =  f  ->  (
( t `  i
)  e.  ran  ( T `  ( t `  ( i  -  1 ) ) )  <->  ( f `  i )  e.  ran  ( T `  ( f `
 ( i  - 
1 ) ) ) ) )
3630, 35raleqbidv 3077 . . . . . . 7  |-  ( t  =  f  ->  ( A. i  e.  (
1..^ ( # `  t
) ) ( t `
 i )  e. 
ran  ( T `  ( t `  (
i  -  1 ) ) )  <->  A. i  e.  ( 1..^ ( # `  f ) ) ( f `  i )  e.  ran  ( T `
 ( f `  ( i  -  1 ) ) ) ) )
3728, 36syl5bb 257 . . . . . 6  |-  ( t  =  f  ->  ( A. k  e.  (
1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) )  <->  A. i  e.  ( 1..^ ( # `  f ) ) ( f `  i )  e.  ran  ( T `
 ( f `  ( i  -  1 ) ) ) ) )
3821, 37anbi12d 710 . . . . 5  |-  ( t  =  f  ->  (
( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) )  <->  ( (
f `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  f ) ) ( f `  i )  e.  ran  ( T `
 ( f `  ( i  -  1 ) ) ) ) ) )
3938cbvrabv 3117 . . . 4  |-  { t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) }  =  { f  e.  (Word  W  \  { (/)
} )  |  ( ( f `  0
)  e.  D  /\  A. i  e.  ( 1..^ ( # `  f
) ) ( f `
 i )  e. 
ran  ( T `  ( f `  (
i  -  1 ) ) ) ) }
4019, 39eqtri 2496 . . 3  |-  dom  S  =  { f  e.  (Word 
W  \  { (/) } )  |  ( ( f `
 0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  f ) ) ( f `  i )  e.  ran  ( T `
 ( f `  ( i  -  1 ) ) ) ) }
4111, 40elrab2 3268 . 2  |-  ( F  e.  dom  S  <->  ( F  e.  (Word  W  \  { (/)
} )  /\  (
( F `  0
)  e.  D  /\  A. i  e.  ( 1..^ ( # `  F
) ) ( F `
 i )  e. 
ran  ( T `  ( F `  ( i  -  1 ) ) ) ) ) )
42 3anass 977 . 2  |-  ( ( F  e.  (Word  W  \  { (/) } )  /\  ( F `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  F
) ) ( F `
 i )  e. 
ran  ( T `  ( F `  ( i  -  1 ) ) ) )  <->  ( F  e.  (Word  W  \  { (/)
} )  /\  (
( F `  0
)  e.  D  /\  A. i  e.  ( 1..^ ( # `  F
) ) ( F `
 i )  e. 
ran  ( T `  ( F `  ( i  -  1 ) ) ) ) ) )
4341, 42bitr4i 252 1  |-  ( F  e.  dom  S  <->  ( F  e.  (Word  W  \  { (/)
} )  /\  ( F `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  F ) ) ( F `  i )  e.  ran  ( T `
 ( F `  ( i  -  1 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2817   {crab 2821    \ cdif 3478   (/)c0 3790   {csn 4033   <.cop 4039   <.cotp 4041   U_ciun 4331    |-> cmpt 4511    _I cid 4796    X. cxp 5003   dom cdm 5005   ran crn 5006   ` cfv 5594  (class class class)co 6295    |-> cmpt2 6297   1oc1o 7135   2oc2o 7136   0cc0 9504   1c1 9505    - cmin 9817   ...cfz 11684  ..^cfzo 11804   #chash 12385  Word cword 12515   splice csplice 12520   <"cs2 12786   ~FG cefg 16597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-card 8332  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-n0 10808  df-z 10877  df-uz 11095  df-fz 11685  df-fzo 11805  df-hash 12386  df-word 12523
This theorem is referenced by:  efgsdmi  16623  efgsrel  16625  efgs1  16626  efgs1b  16627  efgsp1  16628  efgsres  16629  efgsfo  16630  efgredlema  16631  efgredlemf  16632  efgredlemd  16635  efgredlemc  16636  efgredlem  16638  efgrelexlemb  16641  efgredeu  16643  efgred2  16644
  Copyright terms: Public domain W3C validator