MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgs1b Structured version   Unicode version

Theorem efgs1b 17078
Description: Every extension sequence ending in an irreducible word is trivial. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgs1b  |-  ( A  e.  dom  S  -> 
( ( S `  A )  e.  D  <->  (
# `  A )  =  1 ) )
Distinct variable groups:    y, z    t, n, v, w, y, z, m, x    m, M    x, n, M, t, v, w    k, m, t, x, T    k, n, v, w, y, z, W, m, t, x    .~ , m, t, x, y, z    m, I, n, t, v, w, x, y, z    D, m, t
Allowed substitution hints:    A( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    I( k)    M( y, z, k)

Proof of Theorem efgs1b
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eldifn 3566 . . . 4  |-  ( ( S `  A )  e.  ( W  \  U_ x  e.  W  ran  ( T `  x
) )  ->  -.  ( S `  A )  e.  U_ x  e.  W  ran  ( T `
 x ) )
2 efgred.d . . . 4  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
31, 2eleq2s 2510 . . 3  |-  ( ( S `  A )  e.  D  ->  -.  ( S `  A )  e.  U_ x  e.  W  ran  ( T `
 x ) )
4 efgval.w . . . . . . . . . 10  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
5 efgval.r . . . . . . . . . 10  |-  .~  =  ( ~FG  `  I )
6 efgval2.m . . . . . . . . . 10  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
7 efgval2.t . . . . . . . . . 10  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
8 efgred.s . . . . . . . . . 10  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
94, 5, 6, 7, 2, 8efgsdm 17072 . . . . . . . . 9  |-  ( A  e.  dom  S  <->  ( A  e.  (Word  W  \  { (/)
} )  /\  ( A `  0 )  e.  D  /\  A. a  e.  ( 1..^ ( # `  A ) ) ( A `  a )  e.  ran  ( T `
 ( A `  ( a  -  1 ) ) ) ) )
109simp1bi 1012 . . . . . . . 8  |-  ( A  e.  dom  S  ->  A  e.  (Word  W  \  { (/) } ) )
11 eldifsn 4097 . . . . . . . . 9  |-  ( A  e.  (Word  W  \  { (/) } )  <->  ( A  e. Word  W  /\  A  =/=  (/) ) )
12 lennncl 12615 . . . . . . . . 9  |-  ( ( A  e. Word  W  /\  A  =/=  (/) )  ->  ( # `
 A )  e.  NN )
1311, 12sylbi 195 . . . . . . . 8  |-  ( A  e.  (Word  W  \  { (/) } )  -> 
( # `  A )  e.  NN )
1410, 13syl 17 . . . . . . 7  |-  ( A  e.  dom  S  -> 
( # `  A )  e.  NN )
15 elnn1uz2 11203 . . . . . . 7  |-  ( (
# `  A )  e.  NN  <->  ( ( # `  A )  =  1  \/  ( # `  A
)  e.  ( ZZ>= ` 
2 ) ) )
1614, 15sylib 196 . . . . . 6  |-  ( A  e.  dom  S  -> 
( ( # `  A
)  =  1  \/  ( # `  A
)  e.  ( ZZ>= ` 
2 ) ) )
1716ord 375 . . . . 5  |-  ( A  e.  dom  S  -> 
( -.  ( # `  A )  =  1  ->  ( # `  A
)  e.  ( ZZ>= ` 
2 ) ) )
1810eldifad 3426 . . . . . . . . . . . 12  |-  ( A  e.  dom  S  ->  A  e. Word  W )
1918adantr 463 . . . . . . . . . . 11  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  ->  A  e. Word  W )
20 wrdf 12603 . . . . . . . . . . 11  |-  ( A  e. Word  W  ->  A : ( 0..^ (
# `  A )
) --> W )
2119, 20syl 17 . . . . . . . . . 10  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  ->  A : ( 0..^ (
# `  A )
) --> W )
22 1z 10935 . . . . . . . . . . . . . . 15  |-  1  e.  ZZ
23 simpr 459 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( # `  A )  e.  ( ZZ>= `  2
) )
24 df-2 10635 . . . . . . . . . . . . . . . . 17  |-  2  =  ( 1  +  1 )
2524fveq2i 5852 . . . . . . . . . . . . . . . 16  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
2623, 25syl6eleq 2500 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( # `  A )  e.  ( ZZ>= `  (
1  +  1 ) ) )
27 eluzp1m1 11150 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  ZZ  /\  ( # `  A )  e.  ( ZZ>= `  (
1  +  1 ) ) )  ->  (
( # `  A )  -  1 )  e.  ( ZZ>= `  1 )
)
2822, 26, 27sylancr 661 . . . . . . . . . . . . . 14  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( ( # `  A
)  -  1 )  e.  ( ZZ>= `  1
) )
29 nnuz 11162 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
3028, 29syl6eleqr 2501 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( ( # `  A
)  -  1 )  e.  NN )
31 lbfzo0 11894 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0..^ ( ( # `  A
)  -  1 ) )  <->  ( ( # `  A )  -  1 )  e.  NN )
3230, 31sylibr 212 . . . . . . . . . . . 12  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
0  e.  ( 0..^ ( ( # `  A
)  -  1 ) ) )
33 fzoend 11940 . . . . . . . . . . . 12  |-  ( 0  e.  ( 0..^ ( ( # `  A
)  -  1 ) )  ->  ( (
( # `  A )  -  1 )  - 
1 )  e.  ( 0..^ ( ( # `  A )  -  1 ) ) )
34 elfzofz 11874 . . . . . . . . . . . 12  |-  ( ( ( ( # `  A
)  -  1 )  -  1 )  e.  ( 0..^ ( (
# `  A )  -  1 ) )  ->  ( ( (
# `  A )  -  1 )  - 
1 )  e.  ( 0 ... ( (
# `  A )  -  1 ) ) )
3532, 33, 343syl 18 . . . . . . . . . . 11  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( # `  A )  -  1 )  -  1 )  e.  ( 0 ... ( ( # `  A
)  -  1 ) ) )
36 eluzelz 11136 . . . . . . . . . . . . 13  |-  ( (
# `  A )  e.  ( ZZ>= `  2 )  ->  ( # `  A
)  e.  ZZ )
3736adantl 464 . . . . . . . . . . . 12  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( # `  A )  e.  ZZ )
38 fzoval 11860 . . . . . . . . . . . 12  |-  ( (
# `  A )  e.  ZZ  ->  ( 0..^ ( # `  A
) )  =  ( 0 ... ( (
# `  A )  -  1 ) ) )
3937, 38syl 17 . . . . . . . . . . 11  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( 0..^ ( # `  A ) )  =  ( 0 ... (
( # `  A )  -  1 ) ) )
4035, 39eleqtrrd 2493 . . . . . . . . . 10  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( # `  A )  -  1 )  -  1 )  e.  ( 0..^ (
# `  A )
) )
4121, 40ffvelrnd 6010 . . . . . . . . 9  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( A `  (
( ( # `  A
)  -  1 )  -  1 ) )  e.  W )
42 uz2m1nn 11201 . . . . . . . . . 10  |-  ( (
# `  A )  e.  ( ZZ>= `  2 )  ->  ( ( # `  A
)  -  1 )  e.  NN )
434, 5, 6, 7, 2, 8efgsdmi 17074 . . . . . . . . . 10  |-  ( ( A  e.  dom  S  /\  ( ( # `  A
)  -  1 )  e.  NN )  -> 
( S `  A
)  e.  ran  ( T `  ( A `  ( ( ( # `  A )  -  1 )  -  1 ) ) ) )
4442, 43sylan2 472 . . . . . . . . 9  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( S `  A
)  e.  ran  ( T `  ( A `  ( ( ( # `  A )  -  1 )  -  1 ) ) ) )
45 fveq2 5849 . . . . . . . . . . . 12  |-  ( a  =  ( A `  ( ( ( # `  A )  -  1 )  -  1 ) )  ->  ( T `  a )  =  ( T `  ( A `
 ( ( (
# `  A )  -  1 )  - 
1 ) ) ) )
4645rneqd 5051 . . . . . . . . . . 11  |-  ( a  =  ( A `  ( ( ( # `  A )  -  1 )  -  1 ) )  ->  ran  ( T `
 a )  =  ran  ( T `  ( A `  ( ( ( # `  A
)  -  1 )  -  1 ) ) ) )
4746eleq2d 2472 . . . . . . . . . 10  |-  ( a  =  ( A `  ( ( ( # `  A )  -  1 )  -  1 ) )  ->  ( ( S `  A )  e.  ran  ( T `  a )  <->  ( S `  A )  e.  ran  ( T `  ( A `
 ( ( (
# `  A )  -  1 )  - 
1 ) ) ) ) )
4847rspcev 3160 . . . . . . . . 9  |-  ( ( ( A `  (
( ( # `  A
)  -  1 )  -  1 ) )  e.  W  /\  ( S `  A )  e.  ran  ( T `  ( A `  ( ( ( # `  A
)  -  1 )  -  1 ) ) ) )  ->  E. a  e.  W  ( S `  A )  e.  ran  ( T `  a ) )
4941, 44, 48syl2anc 659 . . . . . . . 8  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  ->  E. a  e.  W  ( S `  A )  e.  ran  ( T `
 a ) )
50 eliun 4276 . . . . . . . 8  |-  ( ( S `  A )  e.  U_ a  e.  W  ran  ( T `
 a )  <->  E. a  e.  W  ( S `  A )  e.  ran  ( T `  a ) )
5149, 50sylibr 212 . . . . . . 7  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( S `  A
)  e.  U_ a  e.  W  ran  ( T `
 a ) )
52 fveq2 5849 . . . . . . . . 9  |-  ( a  =  x  ->  ( T `  a )  =  ( T `  x ) )
5352rneqd 5051 . . . . . . . 8  |-  ( a  =  x  ->  ran  ( T `  a )  =  ran  ( T `
 x ) )
5453cbviunv 4310 . . . . . . 7  |-  U_ a  e.  W  ran  ( T `
 a )  = 
U_ x  e.  W  ran  ( T `  x
)
5551, 54syl6eleq 2500 . . . . . 6  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( S `  A
)  e.  U_ x  e.  W  ran  ( T `
 x ) )
5655ex 432 . . . . 5  |-  ( A  e.  dom  S  -> 
( ( # `  A
)  e.  ( ZZ>= ` 
2 )  ->  ( S `  A )  e.  U_ x  e.  W  ran  ( T `  x
) ) )
5717, 56syld 42 . . . 4  |-  ( A  e.  dom  S  -> 
( -.  ( # `  A )  =  1  ->  ( S `  A )  e.  U_ x  e.  W  ran  ( T `  x ) ) )
5857con1d 124 . . 3  |-  ( A  e.  dom  S  -> 
( -.  ( S `
 A )  e. 
U_ x  e.  W  ran  ( T `  x
)  ->  ( # `  A
)  =  1 ) )
593, 58syl5 30 . 2  |-  ( A  e.  dom  S  -> 
( ( S `  A )  e.  D  ->  ( # `  A
)  =  1 ) )
609simp2bi 1013 . . . 4  |-  ( A  e.  dom  S  -> 
( A `  0
)  e.  D )
61 oveq1 6285 . . . . . . 7  |-  ( (
# `  A )  =  1  ->  (
( # `  A )  -  1 )  =  ( 1  -  1 ) )
62 1m1e0 10645 . . . . . . 7  |-  ( 1  -  1 )  =  0
6361, 62syl6eq 2459 . . . . . 6  |-  ( (
# `  A )  =  1  ->  (
( # `  A )  -  1 )  =  0 )
6463fveq2d 5853 . . . . 5  |-  ( (
# `  A )  =  1  ->  ( A `  ( ( # `
 A )  - 
1 ) )  =  ( A `  0
) )
6564eleq1d 2471 . . . 4  |-  ( (
# `  A )  =  1  ->  (
( A `  (
( # `  A )  -  1 ) )  e.  D  <->  ( A `  0 )  e.  D ) )
6660, 65syl5ibrcom 222 . . 3  |-  ( A  e.  dom  S  -> 
( ( # `  A
)  =  1  -> 
( A `  (
( # `  A )  -  1 ) )  e.  D ) )
674, 5, 6, 7, 2, 8efgsval 17073 . . . 4  |-  ( A  e.  dom  S  -> 
( S `  A
)  =  ( A `
 ( ( # `  A )  -  1 ) ) )
6867eleq1d 2471 . . 3  |-  ( A  e.  dom  S  -> 
( ( S `  A )  e.  D  <->  ( A `  ( (
# `  A )  -  1 ) )  e.  D ) )
6966, 68sylibrd 234 . 2  |-  ( A  e.  dom  S  -> 
( ( # `  A
)  =  1  -> 
( S `  A
)  e.  D ) )
7059, 69impbid 190 1  |-  ( A  e.  dom  S  -> 
( ( S `  A )  e.  D  <->  (
# `  A )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   A.wral 2754   E.wrex 2755   {crab 2758    \ cdif 3411   (/)c0 3738   {csn 3972   <.cop 3978   <.cotp 3980   U_ciun 4271    |-> cmpt 4453    _I cid 4733    X. cxp 4821   dom cdm 4823   ran crn 4824   -->wf 5565   ` cfv 5569  (class class class)co 6278    |-> cmpt2 6280   1oc1o 7160   2oc2o 7161   0cc0 9522   1c1 9523    + caddc 9525    - cmin 9841   NNcn 10576   2c2 10626   ZZcz 10905   ZZ>=cuz 11127   ...cfz 11726  ..^cfzo 11854   #chash 12452  Word cword 12583   splice csplice 12588   <"cs2 12862   ~FG cefg 17048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-card 8352  df-cda 8580  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-2 10635  df-n0 10837  df-z 10906  df-uz 11128  df-fz 11727  df-fzo 11855  df-hash 12453  df-word 12591
This theorem is referenced by:  efgredlema  17082  efgredeu  17094
  Copyright terms: Public domain W3C validator