MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgs1b Structured version   Unicode version

Theorem efgs1b 16339
Description: Every extension sequence ending in an irreducible word is trivial. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgs1b  |-  ( A  e.  dom  S  -> 
( ( S `  A )  e.  D  <->  (
# `  A )  =  1 ) )
Distinct variable groups:    y, z    t, n, v, w, y, z, m, x    m, M    x, n, M, t, v, w    k, m, t, x, T    k, n, v, w, y, z, W, m, t, x    .~ , m, t, x, y, z    m, I, n, t, v, w, x, y, z    D, m, t
Allowed substitution hints:    A( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    I( k)    M( y, z, k)

Proof of Theorem efgs1b
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eldifn 3579 . . . 4  |-  ( ( S `  A )  e.  ( W  \  U_ x  e.  W  ran  ( T `  x
) )  ->  -.  ( S `  A )  e.  U_ x  e.  W  ran  ( T `
 x ) )
2 efgred.d . . . 4  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
31, 2eleq2s 2559 . . 3  |-  ( ( S `  A )  e.  D  ->  -.  ( S `  A )  e.  U_ x  e.  W  ran  ( T `
 x ) )
4 efgval.w . . . . . . . . . 10  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
5 efgval.r . . . . . . . . . 10  |-  .~  =  ( ~FG  `  I )
6 efgval2.m . . . . . . . . . 10  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
7 efgval2.t . . . . . . . . . 10  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
8 efgred.s . . . . . . . . . 10  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
94, 5, 6, 7, 2, 8efgsdm 16333 . . . . . . . . 9  |-  ( A  e.  dom  S  <->  ( A  e.  (Word  W  \  { (/)
} )  /\  ( A `  0 )  e.  D  /\  A. a  e.  ( 1..^ ( # `  A ) ) ( A `  a )  e.  ran  ( T `
 ( A `  ( a  -  1 ) ) ) ) )
109simp1bi 1003 . . . . . . . 8  |-  ( A  e.  dom  S  ->  A  e.  (Word  W  \  { (/) } ) )
11 eldifsn 4100 . . . . . . . . 9  |-  ( A  e.  (Word  W  \  { (/) } )  <->  ( A  e. Word  W  /\  A  =/=  (/) ) )
12 lennncl 12354 . . . . . . . . 9  |-  ( ( A  e. Word  W  /\  A  =/=  (/) )  ->  ( # `
 A )  e.  NN )
1311, 12sylbi 195 . . . . . . . 8  |-  ( A  e.  (Word  W  \  { (/) } )  -> 
( # `  A )  e.  NN )
1410, 13syl 16 . . . . . . 7  |-  ( A  e.  dom  S  -> 
( # `  A )  e.  NN )
15 elnn1uz2 11034 . . . . . . 7  |-  ( (
# `  A )  e.  NN  <->  ( ( # `  A )  =  1  \/  ( # `  A
)  e.  ( ZZ>= ` 
2 ) ) )
1614, 15sylib 196 . . . . . 6  |-  ( A  e.  dom  S  -> 
( ( # `  A
)  =  1  \/  ( # `  A
)  e.  ( ZZ>= ` 
2 ) ) )
1716ord 377 . . . . 5  |-  ( A  e.  dom  S  -> 
( -.  ( # `  A )  =  1  ->  ( # `  A
)  e.  ( ZZ>= ` 
2 ) ) )
1810eldifad 3440 . . . . . . . . . . . 12  |-  ( A  e.  dom  S  ->  A  e. Word  W )
1918adantr 465 . . . . . . . . . . 11  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  ->  A  e. Word  W )
20 wrdf 12344 . . . . . . . . . . 11  |-  ( A  e. Word  W  ->  A : ( 0..^ (
# `  A )
) --> W )
2119, 20syl 16 . . . . . . . . . 10  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  ->  A : ( 0..^ (
# `  A )
) --> W )
22 1z 10779 . . . . . . . . . . . . . . 15  |-  1  e.  ZZ
23 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( # `  A )  e.  ( ZZ>= `  2
) )
24 df-2 10483 . . . . . . . . . . . . . . . . 17  |-  2  =  ( 1  +  1 )
2524fveq2i 5794 . . . . . . . . . . . . . . . 16  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
2623, 25syl6eleq 2549 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( # `  A )  e.  ( ZZ>= `  (
1  +  1 ) ) )
27 eluzp1m1 10987 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  ZZ  /\  ( # `  A )  e.  ( ZZ>= `  (
1  +  1 ) ) )  ->  (
( # `  A )  -  1 )  e.  ( ZZ>= `  1 )
)
2822, 26, 27sylancr 663 . . . . . . . . . . . . . 14  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( ( # `  A
)  -  1 )  e.  ( ZZ>= `  1
) )
29 nnuz 10999 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
3028, 29syl6eleqr 2550 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( ( # `  A
)  -  1 )  e.  NN )
31 lbfzo0 11689 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0..^ ( ( # `  A
)  -  1 ) )  <->  ( ( # `  A )  -  1 )  e.  NN )
3230, 31sylibr 212 . . . . . . . . . . . 12  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
0  e.  ( 0..^ ( ( # `  A
)  -  1 ) ) )
33 fzoend 11721 . . . . . . . . . . . 12  |-  ( 0  e.  ( 0..^ ( ( # `  A
)  -  1 ) )  ->  ( (
( # `  A )  -  1 )  - 
1 )  e.  ( 0..^ ( ( # `  A )  -  1 ) ) )
34 elfzofz 11670 . . . . . . . . . . . 12  |-  ( ( ( ( # `  A
)  -  1 )  -  1 )  e.  ( 0..^ ( (
# `  A )  -  1 ) )  ->  ( ( (
# `  A )  -  1 )  - 
1 )  e.  ( 0 ... ( (
# `  A )  -  1 ) ) )
3532, 33, 343syl 20 . . . . . . . . . . 11  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( # `  A )  -  1 )  -  1 )  e.  ( 0 ... ( ( # `  A
)  -  1 ) ) )
36 eluzelz 10973 . . . . . . . . . . . . 13  |-  ( (
# `  A )  e.  ( ZZ>= `  2 )  ->  ( # `  A
)  e.  ZZ )
3736adantl 466 . . . . . . . . . . . 12  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( # `  A )  e.  ZZ )
38 fzoval 11657 . . . . . . . . . . . 12  |-  ( (
# `  A )  e.  ZZ  ->  ( 0..^ ( # `  A
) )  =  ( 0 ... ( (
# `  A )  -  1 ) ) )
3937, 38syl 16 . . . . . . . . . . 11  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( 0..^ ( # `  A ) )  =  ( 0 ... (
( # `  A )  -  1 ) ) )
4035, 39eleqtrrd 2542 . . . . . . . . . 10  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( # `  A )  -  1 )  -  1 )  e.  ( 0..^ (
# `  A )
) )
4121, 40ffvelrnd 5945 . . . . . . . . 9  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( A `  (
( ( # `  A
)  -  1 )  -  1 ) )  e.  W )
42 uz2m1nn 11032 . . . . . . . . . 10  |-  ( (
# `  A )  e.  ( ZZ>= `  2 )  ->  ( ( # `  A
)  -  1 )  e.  NN )
434, 5, 6, 7, 2, 8efgsdmi 16335 . . . . . . . . . 10  |-  ( ( A  e.  dom  S  /\  ( ( # `  A
)  -  1 )  e.  NN )  -> 
( S `  A
)  e.  ran  ( T `  ( A `  ( ( ( # `  A )  -  1 )  -  1 ) ) ) )
4442, 43sylan2 474 . . . . . . . . 9  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( S `  A
)  e.  ran  ( T `  ( A `  ( ( ( # `  A )  -  1 )  -  1 ) ) ) )
45 fveq2 5791 . . . . . . . . . . . 12  |-  ( a  =  ( A `  ( ( ( # `  A )  -  1 )  -  1 ) )  ->  ( T `  a )  =  ( T `  ( A `
 ( ( (
# `  A )  -  1 )  - 
1 ) ) ) )
4645rneqd 5167 . . . . . . . . . . 11  |-  ( a  =  ( A `  ( ( ( # `  A )  -  1 )  -  1 ) )  ->  ran  ( T `
 a )  =  ran  ( T `  ( A `  ( ( ( # `  A
)  -  1 )  -  1 ) ) ) )
4746eleq2d 2521 . . . . . . . . . 10  |-  ( a  =  ( A `  ( ( ( # `  A )  -  1 )  -  1 ) )  ->  ( ( S `  A )  e.  ran  ( T `  a )  <->  ( S `  A )  e.  ran  ( T `  ( A `
 ( ( (
# `  A )  -  1 )  - 
1 ) ) ) ) )
4847rspcev 3171 . . . . . . . . 9  |-  ( ( ( A `  (
( ( # `  A
)  -  1 )  -  1 ) )  e.  W  /\  ( S `  A )  e.  ran  ( T `  ( A `  ( ( ( # `  A
)  -  1 )  -  1 ) ) ) )  ->  E. a  e.  W  ( S `  A )  e.  ran  ( T `  a ) )
4941, 44, 48syl2anc 661 . . . . . . . 8  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  ->  E. a  e.  W  ( S `  A )  e.  ran  ( T `
 a ) )
50 eliun 4275 . . . . . . . 8  |-  ( ( S `  A )  e.  U_ a  e.  W  ran  ( T `
 a )  <->  E. a  e.  W  ( S `  A )  e.  ran  ( T `  a ) )
5149, 50sylibr 212 . . . . . . 7  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( S `  A
)  e.  U_ a  e.  W  ran  ( T `
 a ) )
52 fveq2 5791 . . . . . . . . 9  |-  ( a  =  x  ->  ( T `  a )  =  ( T `  x ) )
5352rneqd 5167 . . . . . . . 8  |-  ( a  =  x  ->  ran  ( T `  a )  =  ran  ( T `
 x ) )
5453cbviunv 4309 . . . . . . 7  |-  U_ a  e.  W  ran  ( T `
 a )  = 
U_ x  e.  W  ran  ( T `  x
)
5551, 54syl6eleq 2549 . . . . . 6  |-  ( ( A  e.  dom  S  /\  ( # `  A
)  e.  ( ZZ>= ` 
2 ) )  -> 
( S `  A
)  e.  U_ x  e.  W  ran  ( T `
 x ) )
5655ex 434 . . . . 5  |-  ( A  e.  dom  S  -> 
( ( # `  A
)  e.  ( ZZ>= ` 
2 )  ->  ( S `  A )  e.  U_ x  e.  W  ran  ( T `  x
) ) )
5717, 56syld 44 . . . 4  |-  ( A  e.  dom  S  -> 
( -.  ( # `  A )  =  1  ->  ( S `  A )  e.  U_ x  e.  W  ran  ( T `  x ) ) )
5857con1d 124 . . 3  |-  ( A  e.  dom  S  -> 
( -.  ( S `
 A )  e. 
U_ x  e.  W  ran  ( T `  x
)  ->  ( # `  A
)  =  1 ) )
593, 58syl5 32 . 2  |-  ( A  e.  dom  S  -> 
( ( S `  A )  e.  D  ->  ( # `  A
)  =  1 ) )
609simp2bi 1004 . . . 4  |-  ( A  e.  dom  S  -> 
( A `  0
)  e.  D )
61 oveq1 6199 . . . . . . 7  |-  ( (
# `  A )  =  1  ->  (
( # `  A )  -  1 )  =  ( 1  -  1 ) )
62 1m1e0 10493 . . . . . . 7  |-  ( 1  -  1 )  =  0
6361, 62syl6eq 2508 . . . . . 6  |-  ( (
# `  A )  =  1  ->  (
( # `  A )  -  1 )  =  0 )
6463fveq2d 5795 . . . . 5  |-  ( (
# `  A )  =  1  ->  ( A `  ( ( # `
 A )  - 
1 ) )  =  ( A `  0
) )
6564eleq1d 2520 . . . 4  |-  ( (
# `  A )  =  1  ->  (
( A `  (
( # `  A )  -  1 ) )  e.  D  <->  ( A `  0 )  e.  D ) )
6660, 65syl5ibrcom 222 . . 3  |-  ( A  e.  dom  S  -> 
( ( # `  A
)  =  1  -> 
( A `  (
( # `  A )  -  1 ) )  e.  D ) )
674, 5, 6, 7, 2, 8efgsval 16334 . . . 4  |-  ( A  e.  dom  S  -> 
( S `  A
)  =  ( A `
 ( ( # `  A )  -  1 ) ) )
6867eleq1d 2520 . . 3  |-  ( A  e.  dom  S  -> 
( ( S `  A )  e.  D  <->  ( A `  ( (
# `  A )  -  1 ) )  e.  D ) )
6966, 68sylibrd 234 . 2  |-  ( A  e.  dom  S  -> 
( ( # `  A
)  =  1  -> 
( S `  A
)  e.  D ) )
7059, 69impbid 191 1  |-  ( A  e.  dom  S  -> 
( ( S `  A )  e.  D  <->  (
# `  A )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2644   A.wral 2795   E.wrex 2796   {crab 2799    \ cdif 3425   (/)c0 3737   {csn 3977   <.cop 3983   <.cotp 3985   U_ciun 4271    |-> cmpt 4450    _I cid 4731    X. cxp 4938   dom cdm 4940   ran crn 4941   -->wf 5514   ` cfv 5518  (class class class)co 6192    |-> cmpt2 6194   1oc1o 7015   2oc2o 7016   0cc0 9385   1c1 9386    + caddc 9388    - cmin 9698   NNcn 10425   2c2 10474   ZZcz 10749   ZZ>=cuz 10964   ...cfz 11540  ..^cfzo 11651   #chash 12206  Word cword 12325   splice csplice 12330   <"cs2 12572   ~FG cefg 16309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-1st 6679  df-2nd 6680  df-recs 6934  df-rdg 6968  df-1o 7022  df-oadd 7026  df-er 7203  df-en 7413  df-dom 7414  df-sdom 7415  df-fin 7416  df-card 8212  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-nn 10426  df-2 10483  df-n0 10683  df-z 10750  df-uz 10965  df-fz 11541  df-fzo 11652  df-hash 12207  df-word 12333
This theorem is referenced by:  efgredlema  16343  efgredeu  16355
  Copyright terms: Public domain W3C validator