MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlemf Structured version   Unicode version

Theorem efgredlemf 17081
Description: Lemma for efgredleme 17083. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
efgredlem.1  |-  ( ph  ->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( # `  ( S `  A )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )
efgredlem.2  |-  ( ph  ->  A  e.  dom  S
)
efgredlem.3  |-  ( ph  ->  B  e.  dom  S
)
efgredlem.4  |-  ( ph  ->  ( S `  A
)  =  ( S `
 B ) )
efgredlem.5  |-  ( ph  ->  -.  ( A ` 
0 )  =  ( B `  0 ) )
efgredlemb.k  |-  K  =  ( ( ( # `  A )  -  1 )  -  1 )
efgredlemb.l  |-  L  =  ( ( ( # `  B )  -  1 )  -  1 )
Assertion
Ref Expression
efgredlemf  |-  ( ph  ->  ( ( A `  K )  e.  W  /\  ( B `  L
)  e.  W ) )
Distinct variable groups:    a, b, A    y, a, z, b    L, a, b    K, a, b    t, n, v, w, y, z    m, a, n, t, v, w, x, M, b    k,
a, T, b, m, t, x    W, a, b    k, n, v, w, y, z, W, m, t, x    .~ , a,
b, m, t, x, y, z    B, a, b    S, a, b    I,
a, b, m, n, t, v, w, x, y, z    D, a, b, m, t
Allowed substitution hints:    ph( x, y, z, w, v, t, k, m, n, a, b)    A( x, y, z, w, v, t, k, m, n)    B( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    I( k)    K( x, y, z, w, v, t, k, m, n)    L( x, y, z, w, v, t, k, m, n)    M( y, z, k)

Proof of Theorem efgredlemf
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 efgredlem.2 . . . . . 6  |-  ( ph  ->  A  e.  dom  S
)
2 efgval.w . . . . . . . 8  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
3 efgval.r . . . . . . . 8  |-  .~  =  ( ~FG  `  I )
4 efgval2.m . . . . . . . 8  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
5 efgval2.t . . . . . . . 8  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
6 efgred.d . . . . . . . 8  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
7 efgred.s . . . . . . . 8  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
82, 3, 4, 5, 6, 7efgsdm 17070 . . . . . . 7  |-  ( A  e.  dom  S  <->  ( A  e.  (Word  W  \  { (/)
} )  /\  ( A `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  A ) ) ( A `  i )  e.  ran  ( T `
 ( A `  ( i  -  1 ) ) ) ) )
98simp1bi 1012 . . . . . 6  |-  ( A  e.  dom  S  ->  A  e.  (Word  W  \  { (/) } ) )
101, 9syl 17 . . . . 5  |-  ( ph  ->  A  e.  (Word  W  \  { (/) } ) )
1110eldifad 3425 . . . 4  |-  ( ph  ->  A  e. Word  W )
12 wrdf 12601 . . . 4  |-  ( A  e. Word  W  ->  A : ( 0..^ (
# `  A )
) --> W )
1311, 12syl 17 . . 3  |-  ( ph  ->  A : ( 0..^ ( # `  A
) ) --> W )
14 fzossfz 11875 . . . . 5  |-  ( 0..^ ( ( # `  A
)  -  1 ) )  C_  ( 0 ... ( ( # `  A )  -  1 ) )
15 lencl 12612 . . . . . . . 8  |-  ( A  e. Word  W  ->  ( # `
 A )  e. 
NN0 )
1611, 15syl 17 . . . . . . 7  |-  ( ph  ->  ( # `  A
)  e.  NN0 )
1716nn0zd 11005 . . . . . 6  |-  ( ph  ->  ( # `  A
)  e.  ZZ )
18 fzoval 11858 . . . . . 6  |-  ( (
# `  A )  e.  ZZ  ->  ( 0..^ ( # `  A
) )  =  ( 0 ... ( (
# `  A )  -  1 ) ) )
1917, 18syl 17 . . . . 5  |-  ( ph  ->  ( 0..^ ( # `  A ) )  =  ( 0 ... (
( # `  A )  -  1 ) ) )
2014, 19syl5sseqr 3490 . . . 4  |-  ( ph  ->  ( 0..^ ( (
# `  A )  -  1 ) ) 
C_  ( 0..^ (
# `  A )
) )
21 efgredlemb.k . . . . 5  |-  K  =  ( ( ( # `  A )  -  1 )  -  1 )
22 efgredlem.1 . . . . . . . 8  |-  ( ph  ->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( # `  ( S `  A )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )
23 efgredlem.3 . . . . . . . 8  |-  ( ph  ->  B  e.  dom  S
)
24 efgredlem.4 . . . . . . . 8  |-  ( ph  ->  ( S `  A
)  =  ( S `
 B ) )
25 efgredlem.5 . . . . . . . 8  |-  ( ph  ->  -.  ( A ` 
0 )  =  ( B `  0 ) )
262, 3, 4, 5, 6, 7, 22, 1, 23, 24, 25efgredlema 17080 . . . . . . 7  |-  ( ph  ->  ( ( ( # `  A )  -  1 )  e.  NN  /\  ( ( # `  B
)  -  1 )  e.  NN ) )
2726simpld 457 . . . . . 6  |-  ( ph  ->  ( ( # `  A
)  -  1 )  e.  NN )
28 fzo0end 11939 . . . . . 6  |-  ( ( ( # `  A
)  -  1 )  e.  NN  ->  (
( ( # `  A
)  -  1 )  -  1 )  e.  ( 0..^ ( (
# `  A )  -  1 ) ) )
2927, 28syl 17 . . . . 5  |-  ( ph  ->  ( ( ( # `  A )  -  1 )  -  1 )  e.  ( 0..^ ( ( # `  A
)  -  1 ) ) )
3021, 29syl5eqel 2494 . . . 4  |-  ( ph  ->  K  e.  ( 0..^ ( ( # `  A
)  -  1 ) ) )
3120, 30sseldd 3442 . . 3  |-  ( ph  ->  K  e.  ( 0..^ ( # `  A
) ) )
3213, 31ffvelrnd 6009 . 2  |-  ( ph  ->  ( A `  K
)  e.  W )
332, 3, 4, 5, 6, 7efgsdm 17070 . . . . . . 7  |-  ( B  e.  dom  S  <->  ( B  e.  (Word  W  \  { (/)
} )  /\  ( B `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  B ) ) ( B `  i )  e.  ran  ( T `
 ( B `  ( i  -  1 ) ) ) ) )
3433simp1bi 1012 . . . . . 6  |-  ( B  e.  dom  S  ->  B  e.  (Word  W  \  { (/) } ) )
3523, 34syl 17 . . . . 5  |-  ( ph  ->  B  e.  (Word  W  \  { (/) } ) )
3635eldifad 3425 . . . 4  |-  ( ph  ->  B  e. Word  W )
37 wrdf 12601 . . . 4  |-  ( B  e. Word  W  ->  B : ( 0..^ (
# `  B )
) --> W )
3836, 37syl 17 . . 3  |-  ( ph  ->  B : ( 0..^ ( # `  B
) ) --> W )
39 fzossfz 11875 . . . . 5  |-  ( 0..^ ( ( # `  B
)  -  1 ) )  C_  ( 0 ... ( ( # `  B )  -  1 ) )
40 lencl 12612 . . . . . . . 8  |-  ( B  e. Word  W  ->  ( # `
 B )  e. 
NN0 )
4136, 40syl 17 . . . . . . 7  |-  ( ph  ->  ( # `  B
)  e.  NN0 )
4241nn0zd 11005 . . . . . 6  |-  ( ph  ->  ( # `  B
)  e.  ZZ )
43 fzoval 11858 . . . . . 6  |-  ( (
# `  B )  e.  ZZ  ->  ( 0..^ ( # `  B
) )  =  ( 0 ... ( (
# `  B )  -  1 ) ) )
4442, 43syl 17 . . . . 5  |-  ( ph  ->  ( 0..^ ( # `  B ) )  =  ( 0 ... (
( # `  B )  -  1 ) ) )
4539, 44syl5sseqr 3490 . . . 4  |-  ( ph  ->  ( 0..^ ( (
# `  B )  -  1 ) ) 
C_  ( 0..^ (
# `  B )
) )
46 efgredlemb.l . . . . 5  |-  L  =  ( ( ( # `  B )  -  1 )  -  1 )
4726simprd 461 . . . . . 6  |-  ( ph  ->  ( ( # `  B
)  -  1 )  e.  NN )
48 fzo0end 11939 . . . . . 6  |-  ( ( ( # `  B
)  -  1 )  e.  NN  ->  (
( ( # `  B
)  -  1 )  -  1 )  e.  ( 0..^ ( (
# `  B )  -  1 ) ) )
4947, 48syl 17 . . . . 5  |-  ( ph  ->  ( ( ( # `  B )  -  1 )  -  1 )  e.  ( 0..^ ( ( # `  B
)  -  1 ) ) )
5046, 49syl5eqel 2494 . . . 4  |-  ( ph  ->  L  e.  ( 0..^ ( ( # `  B
)  -  1 ) ) )
5145, 50sseldd 3442 . . 3  |-  ( ph  ->  L  e.  ( 0..^ ( # `  B
) ) )
5238, 51ffvelrnd 6009 . 2  |-  ( ph  ->  ( B `  L
)  e.  W )
5332, 52jca 530 1  |-  ( ph  ->  ( ( A `  K )  e.  W  /\  ( B `  L
)  e.  W ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2753   {crab 2757    \ cdif 3410   (/)c0 3737   {csn 3971   <.cop 3977   <.cotp 3979   U_ciun 4270   class class class wbr 4394    |-> cmpt 4452    _I cid 4732    X. cxp 4820   dom cdm 4822   ran crn 4823   -->wf 5564   ` cfv 5568  (class class class)co 6277    |-> cmpt2 6279   1oc1o 7159   2oc2o 7160   0cc0 9521   1c1 9522    < clt 9657    - cmin 9840   NNcn 10575   NN0cn0 10835   ZZcz 10904   ...cfz 11724  ..^cfzo 11852   #chash 12450  Word cword 12581   splice csplice 12586   <"cs2 12860   ~FG cefg 17046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-er 7347  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-card 8351  df-cda 8579  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-nn 10576  df-2 10634  df-n0 10836  df-z 10905  df-uz 11127  df-fz 11725  df-fzo 11853  df-hash 12451  df-word 12589
This theorem is referenced by:  efgredlemg  17082  efgredleme  17083
  Copyright terms: Public domain W3C validator