MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgred2 Structured version   Unicode version

Theorem efgred2 16560
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgred2  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( ( S `  A )  .~  ( S `  B
)  <->  ( A ` 
0 )  =  ( B `  0 ) ) )
Distinct variable groups:    y, z    t, n, v, w, y, z, m, x    m, M    x, n, M, t, v, w    k, m, t, x, T    k, n, v, w, y, z, W, m, t, x    .~ , m, t, x, y, z    m, I, n, t, v, w, x, y, z    D, m, t
Allowed substitution hints:    A( x, y, z, w, v, t, k, m, n)    B( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    I( k)    M( y, z, k)

Proof of Theorem efgred2
Dummy variables  d 
i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . . . . . . 8  |-  .~  =  ( ~FG  `  I )
3 efgval2.m . . . . . . . 8  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4 efgval2.t . . . . . . . 8  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
5 efgred.d . . . . . . . 8  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
6 efgred.s . . . . . . . 8  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
71, 2, 3, 4, 5, 6efgsfo 16546 . . . . . . 7  |-  S : dom  S -onto-> W
8 fof 5786 . . . . . . 7  |-  ( S : dom  S -onto-> W  ->  S : dom  S --> W )
97, 8ax-mp 5 . . . . . 6  |-  S : dom  S --> W
109ffvelrni 6011 . . . . 5  |-  ( B  e.  dom  S  -> 
( S `  B
)  e.  W )
1110ad2antlr 726 . . . 4  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( S `  B )  e.  W
)
121, 2, 3, 4, 5, 6efgredeu 16559 . . . 4  |-  ( ( S `  B )  e.  W  ->  E! d  e.  D  d  .~  ( S `  B
) )
13 reurmo 3072 . . . 4  |-  ( E! d  e.  D  d  .~  ( S `  B )  ->  E* d  e.  D  d  .~  ( S `  B
) )
1411, 12, 133syl 20 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  E* d  e.  D  d  .~  ( S `  B ) )
151, 2, 3, 4, 5, 6efgsdm 16537 . . . . 5  |-  ( A  e.  dom  S  <->  ( A  e.  (Word  W  \  { (/)
} )  /\  ( A `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  A ) ) ( A `  i )  e.  ran  ( T `
 ( A `  ( i  -  1 ) ) ) ) )
1615simp2bi 1007 . . . 4  |-  ( A  e.  dom  S  -> 
( A `  0
)  e.  D )
1716ad2antrr 725 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( A `  0 )  e.  D )
181, 2efger 16525 . . . . 5  |-  .~  Er  W
1918a1i 11 . . . 4  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  .~  Er  W
)
201, 2, 3, 4, 5, 6efgsrel 16541 . . . . 5  |-  ( A  e.  dom  S  -> 
( A `  0
)  .~  ( S `  A ) )
2120ad2antrr 725 . . . 4  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( A `  0 )  .~  ( S `  A ) )
22 simpr 461 . . . 4  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( S `  A )  .~  ( S `  B )
)
2319, 21, 22ertrd 7317 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( A `  0 )  .~  ( S `  B ) )
241, 2, 3, 4, 5, 6efgsdm 16537 . . . . 5  |-  ( B  e.  dom  S  <->  ( B  e.  (Word  W  \  { (/)
} )  /\  ( B `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  B ) ) ( B `  i )  e.  ran  ( T `
 ( B `  ( i  -  1 ) ) ) ) )
2524simp2bi 1007 . . . 4  |-  ( B  e.  dom  S  -> 
( B `  0
)  e.  D )
2625ad2antlr 726 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( B `  0 )  e.  D )
271, 2, 3, 4, 5, 6efgsrel 16541 . . . 4  |-  ( B  e.  dom  S  -> 
( B `  0
)  .~  ( S `  B ) )
2827ad2antlr 726 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( B `  0 )  .~  ( S `  B ) )
29 breq1 4443 . . . 4  |-  ( d  =  ( A ` 
0 )  ->  (
d  .~  ( S `  B )  <->  ( A `  0 )  .~  ( S `  B ) ) )
30 breq1 4443 . . . 4  |-  ( d  =  ( B ` 
0 )  ->  (
d  .~  ( S `  B )  <->  ( B `  0 )  .~  ( S `  B ) ) )
3129, 30rmoi 3425 . . 3  |-  ( ( E* d  e.  D  d  .~  ( S `  B )  /\  (
( A `  0
)  e.  D  /\  ( A `  0 )  .~  ( S `  B ) )  /\  ( ( B ` 
0 )  e.  D  /\  ( B `  0
)  .~  ( S `  B ) ) )  ->  ( A ` 
0 )  =  ( B `  0 ) )
3214, 17, 23, 26, 28, 31syl122anc 1232 . 2  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( A `  0 )  =  ( B `  0
) )
3318a1i 11 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( A `
 0 )  =  ( B `  0
) )  ->  .~  Er  W )
3420ad2antrr 725 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( A `
 0 )  =  ( B `  0
) )  ->  ( A `  0 )  .~  ( S `  A
) )
35 simpr 461 . . . 4  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( A `
 0 )  =  ( B `  0
) )  ->  ( A `  0 )  =  ( B ` 
0 ) )
3627ad2antlr 726 . . . 4  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( A `
 0 )  =  ( B `  0
) )  ->  ( B `  0 )  .~  ( S `  B
) )
3735, 36eqbrtrd 4460 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( A `
 0 )  =  ( B `  0
) )  ->  ( A `  0 )  .~  ( S `  B
) )
3833, 34, 37ertr3d 7319 . 2  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( A `
 0 )  =  ( B `  0
) )  ->  ( S `  A )  .~  ( S `  B
) )
3932, 38impbida 829 1  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( ( S `  A )  .~  ( S `  B
)  <->  ( A ` 
0 )  =  ( B `  0 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2807   E!wreu 2809   E*wrmo 2810   {crab 2811    \ cdif 3466   (/)c0 3778   {csn 4020   <.cop 4026   <.cotp 4028   U_ciun 4318   class class class wbr 4440    |-> cmpt 4498    _I cid 4783    X. cxp 4990   dom cdm 4992   ran crn 4993   -->wf 5575   -onto->wfo 5577   ` cfv 5579  (class class class)co 6275    |-> cmpt2 6277   1oc1o 7113   2oc2o 7114    Er wer 7298   0cc0 9481   1c1 9482    - cmin 9794   ...cfz 11661  ..^cfzo 11781   #chash 12360  Word cword 12487   splice csplice 12492   <"cs2 12756   ~FG cefg 16513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-ot 4029  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-ec 7303  df-map 7412  df-pm 7413  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-card 8309  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-n0 10785  df-z 10854  df-uz 11072  df-rp 11210  df-fz 11662  df-fzo 11782  df-hash 12361  df-word 12495  df-concat 12497  df-s1 12498  df-substr 12499  df-splice 12500  df-s2 12763  df-efg 16516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator