MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgred2 Structured version   Visualization version   Unicode version

Theorem efgred2 17403
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgred2  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( ( S `  A )  .~  ( S `  B
)  <->  ( A ` 
0 )  =  ( B `  0 ) ) )
Distinct variable groups:    y, z    t, n, v, w, y, z, m, x    m, M    x, n, M, t, v, w    k, m, t, x, T    k, n, v, w, y, z, W, m, t, x    .~ , m, t, x, y, z    m, I, n, t, v, w, x, y, z    D, m, t
Allowed substitution hints:    A( x, y, z, w, v, t, k, m, n)    B( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    I( k)    M( y, z, k)

Proof of Theorem efgred2
Dummy variables  d 
i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . . . . . . 8  |-  .~  =  ( ~FG  `  I )
3 efgval2.m . . . . . . . 8  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4 efgval2.t . . . . . . . 8  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
5 efgred.d . . . . . . . 8  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
6 efgred.s . . . . . . . 8  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
71, 2, 3, 4, 5, 6efgsfo 17389 . . . . . . 7  |-  S : dom  S -onto-> W
8 fof 5793 . . . . . . 7  |-  ( S : dom  S -onto-> W  ->  S : dom  S --> W )
97, 8ax-mp 5 . . . . . 6  |-  S : dom  S --> W
109ffvelrni 6021 . . . . 5  |-  ( B  e.  dom  S  -> 
( S `  B
)  e.  W )
1110ad2antlr 733 . . . 4  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( S `  B )  e.  W
)
121, 2, 3, 4, 5, 6efgredeu 17402 . . . 4  |-  ( ( S `  B )  e.  W  ->  E! d  e.  D  d  .~  ( S `  B
) )
13 reurmo 3010 . . . 4  |-  ( E! d  e.  D  d  .~  ( S `  B )  ->  E* d  e.  D  d  .~  ( S `  B
) )
1411, 12, 133syl 18 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  E* d  e.  D  d  .~  ( S `  B ) )
151, 2, 3, 4, 5, 6efgsdm 17380 . . . . 5  |-  ( A  e.  dom  S  <->  ( A  e.  (Word  W  \  { (/)
} )  /\  ( A `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  A ) ) ( A `  i )  e.  ran  ( T `
 ( A `  ( i  -  1 ) ) ) ) )
1615simp2bi 1024 . . . 4  |-  ( A  e.  dom  S  -> 
( A `  0
)  e.  D )
1716ad2antrr 732 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( A `  0 )  e.  D )
181, 2efger 17368 . . . . 5  |-  .~  Er  W
1918a1i 11 . . . 4  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  .~  Er  W
)
201, 2, 3, 4, 5, 6efgsrel 17384 . . . . 5  |-  ( A  e.  dom  S  -> 
( A `  0
)  .~  ( S `  A ) )
2120ad2antrr 732 . . . 4  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( A `  0 )  .~  ( S `  A ) )
22 simpr 463 . . . 4  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( S `  A )  .~  ( S `  B )
)
2319, 21, 22ertrd 7379 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( A `  0 )  .~  ( S `  B ) )
241, 2, 3, 4, 5, 6efgsdm 17380 . . . . 5  |-  ( B  e.  dom  S  <->  ( B  e.  (Word  W  \  { (/)
} )  /\  ( B `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  B ) ) ( B `  i )  e.  ran  ( T `
 ( B `  ( i  -  1 ) ) ) ) )
2524simp2bi 1024 . . . 4  |-  ( B  e.  dom  S  -> 
( B `  0
)  e.  D )
2625ad2antlr 733 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( B `  0 )  e.  D )
271, 2, 3, 4, 5, 6efgsrel 17384 . . . 4  |-  ( B  e.  dom  S  -> 
( B `  0
)  .~  ( S `  B ) )
2827ad2antlr 733 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( B `  0 )  .~  ( S `  B ) )
29 breq1 4405 . . . 4  |-  ( d  =  ( A ` 
0 )  ->  (
d  .~  ( S `  B )  <->  ( A `  0 )  .~  ( S `  B ) ) )
30 breq1 4405 . . . 4  |-  ( d  =  ( B ` 
0 )  ->  (
d  .~  ( S `  B )  <->  ( B `  0 )  .~  ( S `  B ) ) )
3129, 30rmoi 3360 . . 3  |-  ( ( E* d  e.  D  d  .~  ( S `  B )  /\  (
( A `  0
)  e.  D  /\  ( A `  0 )  .~  ( S `  B ) )  /\  ( ( B ` 
0 )  e.  D  /\  ( B `  0
)  .~  ( S `  B ) ) )  ->  ( A ` 
0 )  =  ( B `  0 ) )
3214, 17, 23, 26, 28, 31syl122anc 1277 . 2  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( A `  0 )  =  ( B `  0
) )
3318a1i 11 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( A `
 0 )  =  ( B `  0
) )  ->  .~  Er  W )
3420ad2antrr 732 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( A `
 0 )  =  ( B `  0
) )  ->  ( A `  0 )  .~  ( S `  A
) )
35 simpr 463 . . . 4  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( A `
 0 )  =  ( B `  0
) )  ->  ( A `  0 )  =  ( B ` 
0 ) )
3627ad2antlr 733 . . . 4  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( A `
 0 )  =  ( B `  0
) )  ->  ( B `  0 )  .~  ( S `  B
) )
3735, 36eqbrtrd 4423 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( A `
 0 )  =  ( B `  0
) )  ->  ( A `  0 )  .~  ( S `  B
) )
3833, 34, 37ertr3d 7381 . 2  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( A `
 0 )  =  ( B `  0
) )  ->  ( S `  A )  .~  ( S `  B
) )
3932, 38impbida 843 1  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( ( S `  A )  .~  ( S `  B
)  <->  ( A ` 
0 )  =  ( B `  0 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887   A.wral 2737   E!wreu 2739   E*wrmo 2740   {crab 2741    \ cdif 3401   (/)c0 3731   {csn 3968   <.cop 3974   <.cotp 3976   U_ciun 4278   class class class wbr 4402    |-> cmpt 4461    _I cid 4744    X. cxp 4832   dom cdm 4834   ran crn 4835   -->wf 5578   -onto->wfo 5580   ` cfv 5582  (class class class)co 6290    |-> cmpt2 6292   1oc1o 7175   2oc2o 7176    Er wer 7360   0cc0 9539   1c1 9540    - cmin 9860   ...cfz 11784  ..^cfzo 11915   #chash 12515  Word cword 12656   splice csplice 12661   <"cs2 12937   ~FG cefg 17356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-ot 3977  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-ec 7365  df-map 7474  df-pm 7475  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fz 11785  df-fzo 11916  df-hash 12516  df-word 12664  df-concat 12666  df-s1 12667  df-substr 12668  df-splice 12669  df-s2 12944  df-efg 17359
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator