MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmval Structured version   Unicode version

Theorem efgmval 16526
Description: Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
efgmval.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
Assertion
Ref Expression
efgmval  |-  ( ( A  e.  I  /\  B  e.  2o )  ->  ( A M B )  =  <. A , 
( 1o  \  B
) >. )
Distinct variable group:    y, z, I
Allowed substitution hints:    A( y, z)    B( y, z)    M( y, z)

Proof of Theorem efgmval
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4213 . 2  |-  ( a  =  A  ->  <. a ,  ( 1o  \ 
b ) >.  =  <. A ,  ( 1o  \ 
b ) >. )
2 difeq2 3616 . . 3  |-  ( b  =  B  ->  ( 1o  \  b )  =  ( 1o  \  B
) )
32opeq2d 4220 . 2  |-  ( b  =  B  ->  <. A , 
( 1o  \  b
) >.  =  <. A , 
( 1o  \  B
) >. )
4 efgmval.m . . 3  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
5 opeq1 4213 . . . 4  |-  ( y  =  a  ->  <. y ,  ( 1o  \ 
z ) >.  =  <. a ,  ( 1o  \ 
z ) >. )
6 difeq2 3616 . . . . 5  |-  ( z  =  b  ->  ( 1o  \  z )  =  ( 1o  \  b
) )
76opeq2d 4220 . . . 4  |-  ( z  =  b  ->  <. a ,  ( 1o  \ 
z ) >.  =  <. a ,  ( 1o  \ 
b ) >. )
85, 7cbvmpt2v 6359 . . 3  |-  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o  \ 
z ) >. )  =  ( a  e.  I ,  b  e.  2o  |->  <. a ,  ( 1o  \  b )
>. )
94, 8eqtri 2496 . 2  |-  M  =  ( a  e.  I ,  b  e.  2o  |->  <. a ,  ( 1o 
\  b ) >.
)
10 opex 4711 . 2  |-  <. A , 
( 1o  \  B
) >.  e.  _V
111, 3, 9, 10ovmpt2 6420 1  |-  ( ( A  e.  I  /\  B  e.  2o )  ->  ( A M B )  =  <. A , 
( 1o  \  B
) >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    \ cdif 3473   <.cop 4033  (class class class)co 6282    |-> cmpt2 6284   1oc1o 7120   2oc2o 7121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-iota 5549  df-fun 5588  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287
This theorem is referenced by:  efgmnvl  16528  efgval2  16538  vrgpinv  16583  frgpuptinv  16585  frgpuplem  16586  frgpnabllem1  16668
  Copyright terms: Public domain W3C validator