MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efginvrel2 Structured version   Unicode version

Theorem efginvrel2 16551
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
Assertion
Ref Expression
efginvrel2  |-  ( A  e.  W  ->  ( A concat  ( M  o.  (reverse `  A ) ) )  .~  (/) )
Distinct variable groups:    y, z    v, n, w, y, z   
n, M, v, w   
n, W, v, w, y, z    y,  .~ , z    n, I, v, w, y, z
Allowed substitution hints:    A( y, z, w, v, n)    .~ ( w, v, n)    T( y, z, w, v, n)    M( y, z)

Proof of Theorem efginvrel2
Dummy variables  a 
b  c  u  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . 4  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 fviss 5925 . . . 4  |-  (  _I 
` Word  ( I  X.  2o ) )  C_ Word  ( I  X.  2o )
31, 2eqsstri 3534 . . 3  |-  W  C_ Word  ( I  X.  2o )
43sseli 3500 . 2  |-  ( A  e.  W  ->  A  e. Word  ( I  X.  2o ) )
5 id 22 . . . . . 6  |-  ( c  =  (/)  ->  c  =  (/) )
6 fveq2 5866 . . . . . . . . 9  |-  ( c  =  (/)  ->  (reverse `  c
)  =  (reverse `  (/) ) )
7 rev0 12701 . . . . . . . . 9  |-  (reverse `  (/) )  =  (/)
86, 7syl6eq 2524 . . . . . . . 8  |-  ( c  =  (/)  ->  (reverse `  c
)  =  (/) )
98coeq2d 5165 . . . . . . 7  |-  ( c  =  (/)  ->  ( M  o.  (reverse `  c
) )  =  ( M  o.  (/) ) )
10 co02 5521 . . . . . . 7  |-  ( M  o.  (/) )  =  (/)
119, 10syl6eq 2524 . . . . . 6  |-  ( c  =  (/)  ->  ( M  o.  (reverse `  c
) )  =  (/) )
125, 11oveq12d 6302 . . . . 5  |-  ( c  =  (/)  ->  ( c concat 
( M  o.  (reverse `  c ) ) )  =  ( (/) concat  (/) ) )
1312breq1d 4457 . . . 4  |-  ( c  =  (/)  ->  ( ( c concat  ( M  o.  (reverse `  c ) ) )  .~  (/)  <->  ( (/) concat  (/) )  .~  (/) ) )
1413imbi2d 316 . . 3  |-  ( c  =  (/)  ->  ( ( A  e.  W  -> 
( c concat  ( M  o.  (reverse `  c )
) )  .~  (/) )  <->  ( A  e.  W  ->  ( (/) concat  (/) )  .~  (/) ) ) )
15 id 22 . . . . . 6  |-  ( c  =  a  ->  c  =  a )
16 fveq2 5866 . . . . . . 7  |-  ( c  =  a  ->  (reverse `  c )  =  (reverse `  a ) )
1716coeq2d 5165 . . . . . 6  |-  ( c  =  a  ->  ( M  o.  (reverse `  c
) )  =  ( M  o.  (reverse `  a
) ) )
1815, 17oveq12d 6302 . . . . 5  |-  ( c  =  a  ->  (
c concat  ( M  o.  (reverse `  c ) ) )  =  ( a concat  ( M  o.  (reverse `  a
) ) ) )
1918breq1d 4457 . . . 4  |-  ( c  =  a  ->  (
( c concat  ( M  o.  (reverse `  c )
) )  .~  (/)  <->  ( a concat  ( M  o.  (reverse `  a
) ) )  .~  (/) ) )
2019imbi2d 316 . . 3  |-  ( c  =  a  ->  (
( A  e.  W  ->  ( c concat  ( M  o.  (reverse `  c
) ) )  .~  (/) )  <->  ( A  e.  W  ->  ( a concat  ( M  o.  (reverse `  a
) ) )  .~  (/) ) ) )
21 id 22 . . . . . 6  |-  ( c  =  ( a concat  <" b "> )  ->  c  =  ( a concat  <" b "> ) )
22 fveq2 5866 . . . . . . 7  |-  ( c  =  ( a concat  <" b "> )  ->  (reverse `  c )  =  (reverse `  ( a concat  <" b "> ) ) )
2322coeq2d 5165 . . . . . 6  |-  ( c  =  ( a concat  <" b "> )  ->  ( M  o.  (reverse `  c ) )  =  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )
2421, 23oveq12d 6302 . . . . 5  |-  ( c  =  ( a concat  <" b "> )  ->  ( c concat  ( M  o.  (reverse `  c
) ) )  =  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  (
a concat  <" b "> ) ) ) ) )
2524breq1d 4457 . . . 4  |-  ( c  =  ( a concat  <" b "> )  ->  ( ( c concat  ( M  o.  (reverse `  c
) ) )  .~  (/)  <->  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  (/) ) )
2625imbi2d 316 . . 3  |-  ( c  =  ( a concat  <" b "> )  ->  ( ( A  e.  W  ->  ( c concat  ( M  o.  (reverse `  c
) ) )  .~  (/) )  <->  ( A  e.  W  ->  ( (
a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  (/) ) ) )
27 id 22 . . . . . 6  |-  ( c  =  A  ->  c  =  A )
28 fveq2 5866 . . . . . . 7  |-  ( c  =  A  ->  (reverse `  c )  =  (reverse `  A ) )
2928coeq2d 5165 . . . . . 6  |-  ( c  =  A  ->  ( M  o.  (reverse `  c
) )  =  ( M  o.  (reverse `  A
) ) )
3027, 29oveq12d 6302 . . . . 5  |-  ( c  =  A  ->  (
c concat  ( M  o.  (reverse `  c ) ) )  =  ( A concat  ( M  o.  (reverse `  A
) ) ) )
3130breq1d 4457 . . . 4  |-  ( c  =  A  ->  (
( c concat  ( M  o.  (reverse `  c )
) )  .~  (/)  <->  ( A concat  ( M  o.  (reverse `  A
) ) )  .~  (/) ) )
3231imbi2d 316 . . 3  |-  ( c  =  A  ->  (
( A  e.  W  ->  ( c concat  ( M  o.  (reverse `  c
) ) )  .~  (/) )  <->  ( A  e.  W  ->  ( A concat  ( M  o.  (reverse `  A
) ) )  .~  (/) ) ) )
33 wrd0 12531 . . . . 5  |-  (/)  e. Word  (
I  X.  2o )
34 ccatlid 12568 . . . . 5  |-  ( (/)  e. Word  ( I  X.  2o )  ->  ( (/) concat  (/) )  =  (/) )
3533, 34ax-mp 5 . . . 4  |-  ( (/) concat  (/) )  =  (/)
36 efgval.r . . . . . . 7  |-  .~  =  ( ~FG  `  I )
371, 36efger 16542 . . . . . 6  |-  .~  Er  W
3837a1i 11 . . . . 5  |-  ( A  e.  W  ->  .~  Er  W )
391efgrcl 16539 . . . . . . 7  |-  ( A  e.  W  ->  (
I  e.  _V  /\  W  = Word  ( I  X.  2o ) ) )
4039simprd 463 . . . . . 6  |-  ( A  e.  W  ->  W  = Word  ( I  X.  2o ) )
4133, 40syl5eleqr 2562 . . . . 5  |-  ( A  e.  W  ->  (/)  e.  W
)
4238, 41erref 7331 . . . 4  |-  ( A  e.  W  ->  (/)  .~  (/) )
4335, 42syl5eqbr 4480 . . 3  |-  ( A  e.  W  ->  ( (/) concat  (/) )  .~  (/) )
4437a1i 11 . . . . . . 7  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  .~  Er  W )
45 simprl 755 . . . . . . . . . 10  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  e. Word  ( I  X.  2o ) )
46 revcl 12698 . . . . . . . . . . . 12  |-  ( a  e. Word  ( I  X.  2o )  ->  (reverse `  a
)  e. Word  ( I  X.  2o ) )
4746ad2antrl 727 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (reverse `  a )  e. Word  (
I  X.  2o ) )
48 efgval2.m . . . . . . . . . . . 12  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4948efgmf 16537 . . . . . . . . . . 11  |-  M :
( I  X.  2o )
--> ( I  X.  2o )
50 wrdco 12760 . . . . . . . . . . 11  |-  ( ( (reverse `  a )  e. Word  ( I  X.  2o )  /\  M : ( I  X.  2o ) --> ( I  X.  2o ) )  ->  ( M  o.  (reverse `  a
) )  e. Word  (
I  X.  2o ) )
5147, 49, 50sylancl 662 . . . . . . . . . 10  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M  o.  (reverse `  a
) )  e. Word  (
I  X.  2o ) )
52 ccatcl 12558 . . . . . . . . . 10  |-  ( ( a  e. Word  ( I  X.  2o )  /\  ( M  o.  (reverse `  a ) )  e. Word 
( I  X.  2o ) )  ->  (
a concat  ( M  o.  (reverse `  a ) ) )  e. Word  ( I  X.  2o ) )
5345, 51, 52syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
a concat  ( M  o.  (reverse `  a ) ) )  e. Word  ( I  X.  2o ) )
5440adantr 465 . . . . . . . . 9  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  W  = Word  ( I  X.  2o ) )
5553, 54eleqtrrd 2558 . . . . . . . 8  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
a concat  ( M  o.  (reverse `  a ) ) )  e.  W )
56 lencl 12528 . . . . . . . . . . . . . 14  |-  ( a  e. Word  ( I  X.  2o )  ->  ( # `  a )  e.  NN0 )
5756ad2antrl 727 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  e. 
NN0 )
58 nn0uz 11116 . . . . . . . . . . . . 13  |-  NN0  =  ( ZZ>= `  0 )
5957, 58syl6eleq 2565 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  e.  ( ZZ>= `  0 )
)
60 ccatlen 12559 . . . . . . . . . . . . . 14  |-  ( ( a  e. Word  ( I  X.  2o )  /\  ( M  o.  (reverse `  a ) )  e. Word 
( I  X.  2o ) )  ->  ( # `
 ( a concat  ( M  o.  (reverse `  a
) ) ) )  =  ( ( # `  a )  +  (
# `  ( M  o.  (reverse `  a )
) ) ) )
6145, 51, 60syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 ( a concat  ( M  o.  (reverse `  a
) ) ) )  =  ( ( # `  a )  +  (
# `  ( M  o.  (reverse `  a )
) ) ) )
6257nn0zd 10964 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  e.  ZZ )
63 uzid 11096 . . . . . . . . . . . . . . 15  |-  ( (
# `  a )  e.  ZZ  ->  ( # `  a
)  e.  ( ZZ>= `  ( # `  a ) ) )
6462, 63syl 16 . . . . . . . . . . . . . 14  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  e.  ( ZZ>= `  ( # `  a
) ) )
65 lencl 12528 . . . . . . . . . . . . . . 15  |-  ( ( M  o.  (reverse `  a
) )  e. Word  (
I  X.  2o )  ->  ( # `  ( M  o.  (reverse `  a
) ) )  e. 
NN0 )
6651, 65syl 16 . . . . . . . . . . . . . 14  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 ( M  o.  (reverse `  a ) ) )  e.  NN0 )
67 uzaddcl 11137 . . . . . . . . . . . . . 14  |-  ( ( ( # `  a
)  e.  ( ZZ>= `  ( # `  a ) )  /\  ( # `  ( M  o.  (reverse `  a ) ) )  e.  NN0 )  -> 
( ( # `  a
)  +  ( # `  ( M  o.  (reverse `  a ) ) ) )  e.  ( ZZ>= `  ( # `  a ) ) )
6864, 66, 67syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( # `  a )  +  ( # `  ( M  o.  (reverse `  a
) ) ) )  e.  ( ZZ>= `  ( # `
 a ) ) )
6961, 68eqeltrd 2555 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 ( a concat  ( M  o.  (reverse `  a
) ) ) )  e.  ( ZZ>= `  ( # `
 a ) ) )
70 elfzuzb 11682 . . . . . . . . . . . 12  |-  ( (
# `  a )  e.  ( 0 ... ( # `
 ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  <->  ( ( # `  a )  e.  (
ZZ>= `  0 )  /\  ( # `  ( a concat 
( M  o.  (reverse `  a ) ) ) )  e.  ( ZZ>= `  ( # `  a ) ) ) )
7159, 69, 70sylanbrc 664 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  e.  ( 0 ... ( # `
 ( a concat  ( M  o.  (reverse `  a
) ) ) ) ) )
72 simprr 756 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  b  e.  ( I  X.  2o ) )
73 efgval2.t . . . . . . . . . . . 12  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
741, 36, 48, 73efgtval 16547 . . . . . . . . . . 11  |-  ( ( ( a concat  ( M  o.  (reverse `  a
) ) )  e.  W  /\  ( # `  a )  e.  ( 0 ... ( # `  ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  /\  b  e.  ( I  X.  2o ) )  ->  (
( # `  a ) ( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) b )  =  ( ( a concat  ( M  o.  (reverse `  a
) ) ) splice  <. (
# `  a ) ,  ( # `  a
) ,  <" b
( M `  b
) "> >. )
)
7555, 71, 72, 74syl3anc 1228 . . . . . . . . . 10  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( # `  a ) ( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) b )  =  ( ( a concat  ( M  o.  (reverse `  a
) ) ) splice  <. (
# `  a ) ,  ( # `  a
) ,  <" b
( M `  b
) "> >. )
)
7633a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (/)  e. Word  (
I  X.  2o ) )
7749ffvelrni 6020 . . . . . . . . . . . . 13  |-  ( b  e.  ( I  X.  2o )  ->  ( M `
 b )  e.  ( I  X.  2o ) )
7872, 77syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M `  b )  e.  ( I  X.  2o ) )
7972, 78s2cld 12797 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  <" b
( M `  b
) ">  e. Word  ( I  X.  2o ) )
80 ccatrid 12569 . . . . . . . . . . . . . 14  |-  ( a  e. Word  ( I  X.  2o )  ->  ( a concat  (/) )  =  a )
8180ad2antrl 727 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
a concat  (/) )  =  a )
8281eqcomd 2475 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  =  ( a concat  (/) ) )
8382oveq1d 6299 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
a concat  ( M  o.  (reverse `  a ) ) )  =  ( ( a concat  (/) ) concat  ( M  o.  (reverse `  a ) ) ) )
84 eqidd 2468 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  =  ( # `  a
) )
85 hash0 12405 . . . . . . . . . . . . 13  |-  ( # `  (/) )  =  0
8685oveq2i 6295 . . . . . . . . . . . 12  |-  ( (
# `  a )  +  ( # `  (/) ) )  =  ( ( # `  a )  +  0 )
8757nn0cnd 10854 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  e.  CC )
8887addid1d 9779 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( # `  a )  +  0 )  =  ( # `  a
) )
8986, 88syl5req 2521 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  =  ( ( # `  a
)  +  ( # `  (/) ) ) )
9045, 76, 51, 79, 83, 84, 89splval2 12696 . . . . . . . . . 10  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  ( M  o.  (reverse `  a )
) ) splice  <. ( # `  a ) ,  (
# `  a ) ,  <" b ( M `  b ) "> >. )  =  ( ( a concat  <" b ( M `
 b ) "> ) concat  ( M  o.  (reverse `  a )
) ) )
9172s1cld 12578 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  <" b ">  e. Word  ( I  X.  2o ) )
92 revccat 12703 . . . . . . . . . . . . . . . 16  |-  ( ( a  e. Word  ( I  X.  2o )  /\  <" b ">  e. Word  ( I  X.  2o ) )  ->  (reverse `  ( a concat  <" b "> ) )  =  ( (reverse `  <" b "> ) concat  (reverse `  a ) ) )
9345, 91, 92syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (reverse `  ( a concat  <" b "> ) )  =  ( (reverse `  <" b "> ) concat  (reverse `  a ) ) )
94 revs1 12702 . . . . . . . . . . . . . . . 16  |-  (reverse `  <" b "> )  =  <" b ">
9594oveq1i 6294 . . . . . . . . . . . . . . 15  |-  ( (reverse `  <" b "> ) concat  (reverse `  a
) )  =  (
<" b "> concat  (reverse `  a ) )
9693, 95syl6eq 2524 . . . . . . . . . . . . . 14  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (reverse `  ( a concat  <" b "> ) )  =  ( <" b "> concat  (reverse `  a )
) )
9796coeq2d 5165 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M  o.  (reverse `  (
a concat  <" b "> ) ) )  =  ( M  o.  ( <" b "> concat  (reverse `  a )
) ) )
9849a1i 11 . . . . . . . . . . . . . 14  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  M : ( I  X.  2o ) --> ( I  X.  2o ) )
99 ccatco 12764 . . . . . . . . . . . . . 14  |-  ( (
<" b ">  e. Word  ( I  X.  2o )  /\  (reverse `  a
)  e. Word  ( I  X.  2o )  /\  M : ( I  X.  2o ) --> ( I  X.  2o ) )  ->  ( M  o.  ( <" b "> concat  (reverse `  a
) ) )  =  ( ( M  o.  <" b "> ) concat  ( M  o.  (reverse `  a ) ) ) )
10091, 47, 98, 99syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M  o.  ( <" b "> concat  (reverse `  a
) ) )  =  ( ( M  o.  <" b "> ) concat  ( M  o.  (reverse `  a ) ) ) )
101 s1co 12762 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  ( I  X.  2o )  /\  M : ( I  X.  2o ) --> ( I  X.  2o ) )  ->  ( M  o.  <" b "> )  =  <" ( M `  b
) "> )
10272, 49, 101sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M  o.  <" b "> )  =  <" ( M `  b
) "> )
103102oveq1d 6299 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( M  o.  <" b "> ) concat  ( M  o.  (reverse `  a
) ) )  =  ( <" ( M `  b ) "> concat  ( M  o.  (reverse `  a ) ) ) )
10497, 100, 1033eqtrd 2512 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M  o.  (reverse `  (
a concat  <" b "> ) ) )  =  ( <" ( M `  b ) "> concat  ( M  o.  (reverse `  a ) ) ) )
105104oveq2d 6300 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  =  ( ( a concat  <" b "> ) concat  ( <" ( M `  b ) "> concat  ( M  o.  (reverse `  a ) ) ) ) )
106 ccatcl 12558 . . . . . . . . . . . . 13  |-  ( ( a  e. Word  ( I  X.  2o )  /\  <" b ">  e. Word  ( I  X.  2o ) )  ->  (
a concat  <" b "> )  e. Word  (
I  X.  2o ) )
10745, 91, 106syl2anc 661 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
a concat  <" b "> )  e. Word  (
I  X.  2o ) )
10878s1cld 12578 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  <" ( M `  b ) ">  e. Word  ( I  X.  2o ) )
109 ccatass 12570 . . . . . . . . . . . 12  |-  ( ( ( a concat  <" b "> )  e. Word  (
I  X.  2o )  /\  <" ( M `
 b ) ">  e. Word  ( I  X.  2o )  /\  ( M  o.  (reverse `  a
) )  e. Word  (
I  X.  2o ) )  ->  ( (
( a concat  <" b "> ) concat  <" ( M `  b ) "> ) concat  ( M  o.  (reverse `  a )
) )  =  ( ( a concat  <" b "> ) concat  ( <" ( M `  b
) "> concat  ( M  o.  (reverse `  a
) ) ) ) )
110107, 108, 51, 109syl3anc 1228 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( ( a concat  <" b "> ) concat  <" ( M `  b ) "> ) concat  ( M  o.  (reverse `  a ) ) )  =  ( ( a concat  <" b "> ) concat  ( <" ( M `  b ) "> concat  ( M  o.  (reverse `  a ) ) ) ) )
111 ccatass 12570 . . . . . . . . . . . . . 14  |-  ( ( a  e. Word  ( I  X.  2o )  /\  <" b ">  e. Word  ( I  X.  2o )  /\  <" ( M `
 b ) ">  e. Word  ( I  X.  2o ) )  -> 
( ( a concat  <" b "> ) concat  <" ( M `  b ) "> )  =  ( a concat  (
<" b "> concat  <" ( M `  b ) "> ) ) )
11245, 91, 108, 111syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  <" b "> ) concat  <" ( M `  b ) "> )  =  ( a concat  ( <" b "> concat  <" ( M `
 b ) "> ) ) )
113 df-s2 12776 . . . . . . . . . . . . . 14  |-  <" b
( M `  b
) ">  =  ( <" b "> concat  <" ( M `
 b ) "> )
114113oveq2i 6295 . . . . . . . . . . . . 13  |-  ( a concat  <" b ( M `
 b ) "> )  =  ( a concat  ( <" b "> concat  <" ( M `
 b ) "> ) )
115112, 114syl6eqr 2526 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  <" b "> ) concat  <" ( M `  b ) "> )  =  ( a concat  <" b ( M `  b ) "> ) )
116115oveq1d 6299 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( ( a concat  <" b "> ) concat  <" ( M `  b ) "> ) concat  ( M  o.  (reverse `  a ) ) )  =  ( ( a concat  <" b ( M `
 b ) "> ) concat  ( M  o.  (reverse `  a )
) ) )
117105, 110, 1163eqtr2rd 2515 . . . . . . . . . 10  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  <" b
( M `  b
) "> ) concat  ( M  o.  (reverse `  a
) ) )  =  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  (
a concat  <" b "> ) ) ) ) )
11875, 90, 1173eqtrd 2512 . . . . . . . . 9  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( # `  a ) ( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) b )  =  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  (
a concat  <" b "> ) ) ) ) )
1191, 36, 48, 73efgtf 16546 . . . . . . . . . . . 12  |-  ( ( a concat  ( M  o.  (reverse `  a ) ) )  e.  W  -> 
( ( T `  ( a concat  ( M  o.  (reverse `  a ) ) ) )  =  ( m  e.  ( 0 ... ( # `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) ) ,  u  e.  ( I  X.  2o )  |->  ( ( a concat 
( M  o.  (reverse `  a ) ) ) splice  <. m ,  m , 
<" u ( M `
 u ) "> >. ) )  /\  ( T `  ( a concat 
( M  o.  (reverse `  a ) ) ) ) : ( ( 0 ... ( # `  ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  X.  ( I  X.  2o ) ) --> W ) )
120119simprd 463 . . . . . . . . . . 11  |-  ( ( a concat  ( M  o.  (reverse `  a ) ) )  e.  W  -> 
( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) : ( ( 0 ... ( # `  ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  X.  ( I  X.  2o ) ) --> W )
121 ffn 5731 . . . . . . . . . . 11  |-  ( ( T `  ( a concat 
( M  o.  (reverse `  a ) ) ) ) : ( ( 0 ... ( # `  ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  X.  ( I  X.  2o ) ) --> W  ->  ( T `  ( a concat  ( M  o.  (reverse `  a
) ) ) )  Fn  ( ( 0 ... ( # `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) )  X.  (
I  X.  2o ) ) )
12255, 120, 1213syl 20 . . . . . . . . . 10  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( T `  ( a concat  ( M  o.  (reverse `  a
) ) ) )  Fn  ( ( 0 ... ( # `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) )  X.  (
I  X.  2o ) ) )
123 fnovrn 6434 . . . . . . . . . 10  |-  ( ( ( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) )  Fn  ( ( 0 ... ( # `  ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  X.  ( I  X.  2o ) )  /\  ( # `  a
)  e.  ( 0 ... ( # `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) )  /\  b  e.  ( I  X.  2o ) )  ->  (
( # `  a ) ( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) b )  e. 
ran  ( T `  ( a concat  ( M  o.  (reverse `  a ) ) ) ) )
124122, 71, 72, 123syl3anc 1228 . . . . . . . . 9  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( # `  a ) ( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) b )  e. 
ran  ( T `  ( a concat  ( M  o.  (reverse `  a ) ) ) ) )
125118, 124eqeltrrd 2556 . . . . . . . 8  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  e.  ran  ( T `
 ( a concat  ( M  o.  (reverse `  a
) ) ) ) )
1261, 36, 48, 73efgi2 16549 . . . . . . . 8  |-  ( ( ( a concat  ( M  o.  (reverse `  a
) ) )  e.  W  /\  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  e.  ran  ( T `
 ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  ->  ( a concat  ( M  o.  (reverse `  a
) ) )  .~  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  (
a concat  <" b "> ) ) ) ) )
12755, 125, 126syl2anc 661 . . . . . . 7  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
a concat  ( M  o.  (reverse `  a ) ) )  .~  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) ) )
12844, 127ersym 7323 . . . . . 6  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  ( a concat  ( M  o.  (reverse `  a
) ) ) )
12944ertr 7326 . . . . . 6  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  ( a concat 
( M  o.  (reverse `  a ) ) )  /\  ( a concat  ( M  o.  (reverse `  a
) ) )  .~  (/) )  ->  ( (
a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  (/) ) )
130128, 129mpand 675 . . . . 5  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  ( M  o.  (reverse `  a )
) )  .~  (/)  ->  (
( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  (/) ) )
131130expcom 435 . . . 4  |-  ( ( a  e. Word  ( I  X.  2o )  /\  b  e.  ( I  X.  2o ) )  -> 
( A  e.  W  ->  ( ( a concat  ( M  o.  (reverse `  a
) ) )  .~  (/) 
->  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  (
a concat  <" b "> ) ) ) )  .~  (/) ) ) )
132131a2d 26 . . 3  |-  ( ( a  e. Word  ( I  X.  2o )  /\  b  e.  ( I  X.  2o ) )  -> 
( ( A  e.  W  ->  ( a concat  ( M  o.  (reverse `  a
) ) )  .~  (/) )  ->  ( A  e.  W  ->  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  (/) ) ) )
13314, 20, 26, 32, 43, 132wrdind 12665 . 2  |-  ( A  e. Word  ( I  X.  2o )  ->  ( A  e.  W  ->  ( A concat  ( M  o.  (reverse `  A ) ) )  .~  (/) ) )
1344, 133mpcom 36 1  |-  ( A  e.  W  ->  ( A concat  ( M  o.  (reverse `  A ) ) )  .~  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113    \ cdif 3473   (/)c0 3785   <.cop 4033   <.cotp 4035   class class class wbr 4447    |-> cmpt 4505    _I cid 4790    X. cxp 4997   ran crn 5000    o. ccom 5003    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284    |-> cmpt2 6286   1oc1o 7123   2oc2o 7124    Er wer 7308   0cc0 9492    + caddc 9495   NN0cn0 10795   ZZcz 10864   ZZ>=cuz 11082   ...cfz 11672   #chash 12373  Word cword 12500   concat cconcat 12502   <"cs1 12503   splice csplice 12505  reversecreverse 12506   <"cs2 12769   ~FG cefg 16530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-ot 4036  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-ec 7313  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-n0 10796  df-z 10865  df-uz 11083  df-fz 11673  df-fzo 11793  df-hash 12374  df-word 12508  df-concat 12510  df-s1 12511  df-substr 12512  df-splice 12513  df-reverse 12514  df-s2 12776  df-efg 16533
This theorem is referenced by:  efginvrel1  16552  frgpinv  16588
  Copyright terms: Public domain W3C validator