MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efginvrel2 Unicode version

Theorem efginvrel2 15314
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
Assertion
Ref Expression
efginvrel2  |-  ( A  e.  W  ->  ( A concat  ( M  o.  (reverse `  A ) ) )  .~  (/) )
Distinct variable groups:    y, z    v, n, w, y, z   
n, M, v, w   
n, W, v, w, y, z    y,  .~ , z    n, I, v, w, y, z
Allowed substitution hints:    A( y, z, w, v, n)    .~ ( w, v, n)    T( y, z, w, v, n)    M( y, z)

Proof of Theorem efginvrel2
Dummy variables  a 
b  c  u  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . 4  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 fviss 5743 . . . 4  |-  (  _I 
` Word  ( I  X.  2o ) )  C_ Word  ( I  X.  2o )
31, 2eqsstri 3338 . . 3  |-  W  C_ Word  ( I  X.  2o )
43sseli 3304 . 2  |-  ( A  e.  W  ->  A  e. Word  ( I  X.  2o ) )
5 id 20 . . . . . 6  |-  ( c  =  (/)  ->  c  =  (/) )
6 fveq2 5687 . . . . . . . . 9  |-  ( c  =  (/)  ->  (reverse `  c
)  =  (reverse `  (/) ) )
7 rev0 11751 . . . . . . . . 9  |-  (reverse `  (/) )  =  (/)
86, 7syl6eq 2452 . . . . . . . 8  |-  ( c  =  (/)  ->  (reverse `  c
)  =  (/) )
98coeq2d 4994 . . . . . . 7  |-  ( c  =  (/)  ->  ( M  o.  (reverse `  c
) )  =  ( M  o.  (/) ) )
10 co02 5342 . . . . . . 7  |-  ( M  o.  (/) )  =  (/)
119, 10syl6eq 2452 . . . . . 6  |-  ( c  =  (/)  ->  ( M  o.  (reverse `  c
) )  =  (/) )
125, 11oveq12d 6058 . . . . 5  |-  ( c  =  (/)  ->  ( c concat 
( M  o.  (reverse `  c ) ) )  =  ( (/) concat  (/) ) )
1312breq1d 4182 . . . 4  |-  ( c  =  (/)  ->  ( ( c concat  ( M  o.  (reverse `  c ) ) )  .~  (/)  <->  ( (/) concat  (/) )  .~  (/) ) )
1413imbi2d 308 . . 3  |-  ( c  =  (/)  ->  ( ( A  e.  W  -> 
( c concat  ( M  o.  (reverse `  c )
) )  .~  (/) )  <->  ( A  e.  W  ->  ( (/) concat  (/) )  .~  (/) ) ) )
15 id 20 . . . . . 6  |-  ( c  =  a  ->  c  =  a )
16 fveq2 5687 . . . . . . 7  |-  ( c  =  a  ->  (reverse `  c )  =  (reverse `  a ) )
1716coeq2d 4994 . . . . . 6  |-  ( c  =  a  ->  ( M  o.  (reverse `  c
) )  =  ( M  o.  (reverse `  a
) ) )
1815, 17oveq12d 6058 . . . . 5  |-  ( c  =  a  ->  (
c concat  ( M  o.  (reverse `  c ) ) )  =  ( a concat  ( M  o.  (reverse `  a
) ) ) )
1918breq1d 4182 . . . 4  |-  ( c  =  a  ->  (
( c concat  ( M  o.  (reverse `  c )
) )  .~  (/)  <->  ( a concat  ( M  o.  (reverse `  a
) ) )  .~  (/) ) )
2019imbi2d 308 . . 3  |-  ( c  =  a  ->  (
( A  e.  W  ->  ( c concat  ( M  o.  (reverse `  c
) ) )  .~  (/) )  <->  ( A  e.  W  ->  ( a concat  ( M  o.  (reverse `  a
) ) )  .~  (/) ) ) )
21 id 20 . . . . . 6  |-  ( c  =  ( a concat  <" b "> )  ->  c  =  ( a concat  <" b "> ) )
22 fveq2 5687 . . . . . . 7  |-  ( c  =  ( a concat  <" b "> )  ->  (reverse `  c )  =  (reverse `  ( a concat  <" b "> ) ) )
2322coeq2d 4994 . . . . . 6  |-  ( c  =  ( a concat  <" b "> )  ->  ( M  o.  (reverse `  c ) )  =  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )
2421, 23oveq12d 6058 . . . . 5  |-  ( c  =  ( a concat  <" b "> )  ->  ( c concat  ( M  o.  (reverse `  c
) ) )  =  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  (
a concat  <" b "> ) ) ) ) )
2524breq1d 4182 . . . 4  |-  ( c  =  ( a concat  <" b "> )  ->  ( ( c concat  ( M  o.  (reverse `  c
) ) )  .~  (/)  <->  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  (/) ) )
2625imbi2d 308 . . 3  |-  ( c  =  ( a concat  <" b "> )  ->  ( ( A  e.  W  ->  ( c concat  ( M  o.  (reverse `  c
) ) )  .~  (/) )  <->  ( A  e.  W  ->  ( (
a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  (/) ) ) )
27 id 20 . . . . . 6  |-  ( c  =  A  ->  c  =  A )
28 fveq2 5687 . . . . . . 7  |-  ( c  =  A  ->  (reverse `  c )  =  (reverse `  A ) )
2928coeq2d 4994 . . . . . 6  |-  ( c  =  A  ->  ( M  o.  (reverse `  c
) )  =  ( M  o.  (reverse `  A
) ) )
3027, 29oveq12d 6058 . . . . 5  |-  ( c  =  A  ->  (
c concat  ( M  o.  (reverse `  c ) ) )  =  ( A concat  ( M  o.  (reverse `  A
) ) ) )
3130breq1d 4182 . . . 4  |-  ( c  =  A  ->  (
( c concat  ( M  o.  (reverse `  c )
) )  .~  (/)  <->  ( A concat  ( M  o.  (reverse `  A
) ) )  .~  (/) ) )
3231imbi2d 308 . . 3  |-  ( c  =  A  ->  (
( A  e.  W  ->  ( c concat  ( M  o.  (reverse `  c
) ) )  .~  (/) )  <->  ( A  e.  W  ->  ( A concat  ( M  o.  (reverse `  A
) ) )  .~  (/) ) ) )
33 wrd0 11687 . . . . 5  |-  (/)  e. Word  (
I  X.  2o )
34 ccatlid 11703 . . . . 5  |-  ( (/)  e. Word  ( I  X.  2o )  ->  ( (/) concat  (/) )  =  (/) )
3533, 34ax-mp 8 . . . 4  |-  ( (/) concat  (/) )  =  (/)
36 efgval.r . . . . . . 7  |-  .~  =  ( ~FG  `  I )
371, 36efger 15305 . . . . . 6  |-  .~  Er  W
3837a1i 11 . . . . 5  |-  ( A  e.  W  ->  .~  Er  W )
391efgrcl 15302 . . . . . . 7  |-  ( A  e.  W  ->  (
I  e.  _V  /\  W  = Word  ( I  X.  2o ) ) )
4039simprd 450 . . . . . 6  |-  ( A  e.  W  ->  W  = Word  ( I  X.  2o ) )
4133, 40syl5eleqr 2491 . . . . 5  |-  ( A  e.  W  ->  (/)  e.  W
)
4238, 41erref 6884 . . . 4  |-  ( A  e.  W  ->  (/)  .~  (/) )
4335, 42syl5eqbr 4205 . . 3  |-  ( A  e.  W  ->  ( (/) concat  (/) )  .~  (/) )
4437a1i 11 . . . . . . 7  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  .~  Er  W )
45 simprl 733 . . . . . . . . . 10  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  e. Word  ( I  X.  2o ) )
46 revcl 11748 . . . . . . . . . . . 12  |-  ( a  e. Word  ( I  X.  2o )  ->  (reverse `  a
)  e. Word  ( I  X.  2o ) )
4746ad2antrl 709 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (reverse `  a )  e. Word  (
I  X.  2o ) )
48 efgval2.m . . . . . . . . . . . 12  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4948efgmf 15300 . . . . . . . . . . 11  |-  M :
( I  X.  2o )
--> ( I  X.  2o )
50 wrdco 11755 . . . . . . . . . . 11  |-  ( ( (reverse `  a )  e. Word  ( I  X.  2o )  /\  M : ( I  X.  2o ) --> ( I  X.  2o ) )  ->  ( M  o.  (reverse `  a
) )  e. Word  (
I  X.  2o ) )
5147, 49, 50sylancl 644 . . . . . . . . . 10  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M  o.  (reverse `  a
) )  e. Word  (
I  X.  2o ) )
52 ccatcl 11698 . . . . . . . . . 10  |-  ( ( a  e. Word  ( I  X.  2o )  /\  ( M  o.  (reverse `  a ) )  e. Word 
( I  X.  2o ) )  ->  (
a concat  ( M  o.  (reverse `  a ) ) )  e. Word  ( I  X.  2o ) )
5345, 51, 52syl2anc 643 . . . . . . . . 9  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
a concat  ( M  o.  (reverse `  a ) ) )  e. Word  ( I  X.  2o ) )
5440adantr 452 . . . . . . . . 9  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  W  = Word  ( I  X.  2o ) )
5553, 54eleqtrrd 2481 . . . . . . . 8  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
a concat  ( M  o.  (reverse `  a ) ) )  e.  W )
56 lencl 11690 . . . . . . . . . . . . . 14  |-  ( a  e. Word  ( I  X.  2o )  ->  ( # `  a )  e.  NN0 )
5756ad2antrl 709 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  e. 
NN0 )
58 nn0uz 10476 . . . . . . . . . . . . 13  |-  NN0  =  ( ZZ>= `  0 )
5957, 58syl6eleq 2494 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  e.  ( ZZ>= `  0 )
)
60 ccatlen 11699 . . . . . . . . . . . . . 14  |-  ( ( a  e. Word  ( I  X.  2o )  /\  ( M  o.  (reverse `  a ) )  e. Word 
( I  X.  2o ) )  ->  ( # `
 ( a concat  ( M  o.  (reverse `  a
) ) ) )  =  ( ( # `  a )  +  (
# `  ( M  o.  (reverse `  a )
) ) ) )
6145, 51, 60syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 ( a concat  ( M  o.  (reverse `  a
) ) ) )  =  ( ( # `  a )  +  (
# `  ( M  o.  (reverse `  a )
) ) ) )
6257nn0zd 10329 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  e.  ZZ )
63 uzid 10456 . . . . . . . . . . . . . . 15  |-  ( (
# `  a )  e.  ZZ  ->  ( # `  a
)  e.  ( ZZ>= `  ( # `  a ) ) )
6462, 63syl 16 . . . . . . . . . . . . . 14  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  e.  ( ZZ>= `  ( # `  a
) ) )
65 lencl 11690 . . . . . . . . . . . . . . 15  |-  ( ( M  o.  (reverse `  a
) )  e. Word  (
I  X.  2o )  ->  ( # `  ( M  o.  (reverse `  a
) ) )  e. 
NN0 )
6651, 65syl 16 . . . . . . . . . . . . . 14  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 ( M  o.  (reverse `  a ) ) )  e.  NN0 )
67 uzaddcl 10489 . . . . . . . . . . . . . 14  |-  ( ( ( # `  a
)  e.  ( ZZ>= `  ( # `  a ) )  /\  ( # `  ( M  o.  (reverse `  a ) ) )  e.  NN0 )  -> 
( ( # `  a
)  +  ( # `  ( M  o.  (reverse `  a ) ) ) )  e.  ( ZZ>= `  ( # `  a ) ) )
6864, 66, 67syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( # `  a )  +  ( # `  ( M  o.  (reverse `  a
) ) ) )  e.  ( ZZ>= `  ( # `
 a ) ) )
6961, 68eqeltrd 2478 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 ( a concat  ( M  o.  (reverse `  a
) ) ) )  e.  ( ZZ>= `  ( # `
 a ) ) )
70 elfzuzb 11009 . . . . . . . . . . . 12  |-  ( (
# `  a )  e.  ( 0 ... ( # `
 ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  <->  ( ( # `  a )  e.  (
ZZ>= `  0 )  /\  ( # `  ( a concat 
( M  o.  (reverse `  a ) ) ) )  e.  ( ZZ>= `  ( # `  a ) ) ) )
7159, 69, 70sylanbrc 646 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  e.  ( 0 ... ( # `
 ( a concat  ( M  o.  (reverse `  a
) ) ) ) ) )
72 simprr 734 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  b  e.  ( I  X.  2o ) )
73 efgval2.t . . . . . . . . . . . 12  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
741, 36, 48, 73efgtval 15310 . . . . . . . . . . 11  |-  ( ( ( a concat  ( M  o.  (reverse `  a
) ) )  e.  W  /\  ( # `  a )  e.  ( 0 ... ( # `  ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  /\  b  e.  ( I  X.  2o ) )  ->  (
( # `  a ) ( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) b )  =  ( ( a concat  ( M  o.  (reverse `  a
) ) ) splice  <. (
# `  a ) ,  ( # `  a
) ,  <" b
( M `  b
) "> >. )
)
7555, 71, 72, 74syl3anc 1184 . . . . . . . . . 10  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( # `  a ) ( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) b )  =  ( ( a concat  ( M  o.  (reverse `  a
) ) ) splice  <. (
# `  a ) ,  ( # `  a
) ,  <" b
( M `  b
) "> >. )
)
7633a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (/)  e. Word  (
I  X.  2o ) )
7749ffvelrni 5828 . . . . . . . . . . . . 13  |-  ( b  e.  ( I  X.  2o )  ->  ( M `
 b )  e.  ( I  X.  2o ) )
7872, 77syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M `  b )  e.  ( I  X.  2o ) )
7972, 78s2cld 11788 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  <" b
( M `  b
) ">  e. Word  ( I  X.  2o ) )
80 ccatrid 11704 . . . . . . . . . . . . . 14  |-  ( a  e. Word  ( I  X.  2o )  ->  ( a concat  (/) )  =  a )
8180ad2antrl 709 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
a concat  (/) )  =  a )
8281eqcomd 2409 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  =  ( a concat  (/) ) )
8382oveq1d 6055 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
a concat  ( M  o.  (reverse `  a ) ) )  =  ( ( a concat  (/) ) concat  ( M  o.  (reverse `  a ) ) ) )
84 eqidd 2405 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  =  ( # `  a
) )
85 hash0 11601 . . . . . . . . . . . . 13  |-  ( # `  (/) )  =  0
8685oveq2i 6051 . . . . . . . . . . . 12  |-  ( (
# `  a )  +  ( # `  (/) ) )  =  ( ( # `  a )  +  0 )
8757nn0cnd 10232 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  e.  CC )
8887addid1d 9222 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( # `  a )  +  0 )  =  ( # `  a
) )
8986, 88syl5req 2449 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  =  ( ( # `  a
)  +  ( # `  (/) ) ) )
9045, 76, 51, 79, 83, 84, 89splval2 11741 . . . . . . . . . 10  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  ( M  o.  (reverse `  a )
) ) splice  <. ( # `  a ) ,  (
# `  a ) ,  <" b ( M `  b ) "> >. )  =  ( ( a concat  <" b ( M `
 b ) "> ) concat  ( M  o.  (reverse `  a )
) ) )
9172s1cld 11711 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  <" b ">  e. Word  ( I  X.  2o ) )
92 revccat 11753 . . . . . . . . . . . . . . . 16  |-  ( ( a  e. Word  ( I  X.  2o )  /\  <" b ">  e. Word  ( I  X.  2o ) )  ->  (reverse `  ( a concat  <" b "> ) )  =  ( (reverse `  <" b "> ) concat  (reverse `  a ) ) )
9345, 91, 92syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (reverse `  ( a concat  <" b "> ) )  =  ( (reverse `  <" b "> ) concat  (reverse `  a ) ) )
94 revs1 11752 . . . . . . . . . . . . . . . 16  |-  (reverse `  <" b "> )  =  <" b ">
9594oveq1i 6050 . . . . . . . . . . . . . . 15  |-  ( (reverse `  <" b "> ) concat  (reverse `  a
) )  =  (
<" b "> concat  (reverse `  a ) )
9693, 95syl6eq 2452 . . . . . . . . . . . . . 14  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (reverse `  ( a concat  <" b "> ) )  =  ( <" b "> concat  (reverse `  a )
) )
9796coeq2d 4994 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M  o.  (reverse `  (
a concat  <" b "> ) ) )  =  ( M  o.  ( <" b "> concat  (reverse `  a )
) ) )
9849a1i 11 . . . . . . . . . . . . . 14  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  M : ( I  X.  2o ) --> ( I  X.  2o ) )
99 ccatco 11759 . . . . . . . . . . . . . 14  |-  ( (
<" b ">  e. Word  ( I  X.  2o )  /\  (reverse `  a
)  e. Word  ( I  X.  2o )  /\  M : ( I  X.  2o ) --> ( I  X.  2o ) )  ->  ( M  o.  ( <" b "> concat  (reverse `  a
) ) )  =  ( ( M  o.  <" b "> ) concat  ( M  o.  (reverse `  a ) ) ) )
10091, 47, 98, 99syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M  o.  ( <" b "> concat  (reverse `  a
) ) )  =  ( ( M  o.  <" b "> ) concat  ( M  o.  (reverse `  a ) ) ) )
101 s1co 11757 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  ( I  X.  2o )  /\  M : ( I  X.  2o ) --> ( I  X.  2o ) )  ->  ( M  o.  <" b "> )  =  <" ( M `  b
) "> )
10272, 49, 101sylancl 644 . . . . . . . . . . . . . 14  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M  o.  <" b "> )  =  <" ( M `  b
) "> )
103102oveq1d 6055 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( M  o.  <" b "> ) concat  ( M  o.  (reverse `  a
) ) )  =  ( <" ( M `  b ) "> concat  ( M  o.  (reverse `  a ) ) ) )
10497, 100, 1033eqtrd 2440 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M  o.  (reverse `  (
a concat  <" b "> ) ) )  =  ( <" ( M `  b ) "> concat  ( M  o.  (reverse `  a ) ) ) )
105104oveq2d 6056 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  =  ( ( a concat  <" b "> ) concat  ( <" ( M `  b ) "> concat  ( M  o.  (reverse `  a ) ) ) ) )
106 ccatcl 11698 . . . . . . . . . . . . 13  |-  ( ( a  e. Word  ( I  X.  2o )  /\  <" b ">  e. Word  ( I  X.  2o ) )  ->  (
a concat  <" b "> )  e. Word  (
I  X.  2o ) )
10745, 91, 106syl2anc 643 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
a concat  <" b "> )  e. Word  (
I  X.  2o ) )
10878s1cld 11711 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  <" ( M `  b ) ">  e. Word  ( I  X.  2o ) )
109 ccatass 11705 . . . . . . . . . . . 12  |-  ( ( ( a concat  <" b "> )  e. Word  (
I  X.  2o )  /\  <" ( M `
 b ) ">  e. Word  ( I  X.  2o )  /\  ( M  o.  (reverse `  a
) )  e. Word  (
I  X.  2o ) )  ->  ( (
( a concat  <" b "> ) concat  <" ( M `  b ) "> ) concat  ( M  o.  (reverse `  a )
) )  =  ( ( a concat  <" b "> ) concat  ( <" ( M `  b
) "> concat  ( M  o.  (reverse `  a
) ) ) ) )
110107, 108, 51, 109syl3anc 1184 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( ( a concat  <" b "> ) concat  <" ( M `  b ) "> ) concat  ( M  o.  (reverse `  a ) ) )  =  ( ( a concat  <" b "> ) concat  ( <" ( M `  b ) "> concat  ( M  o.  (reverse `  a ) ) ) ) )
111 ccatass 11705 . . . . . . . . . . . . . 14  |-  ( ( a  e. Word  ( I  X.  2o )  /\  <" b ">  e. Word  ( I  X.  2o )  /\  <" ( M `
 b ) ">  e. Word  ( I  X.  2o ) )  -> 
( ( a concat  <" b "> ) concat  <" ( M `  b ) "> )  =  ( a concat  (
<" b "> concat  <" ( M `  b ) "> ) ) )
11245, 91, 108, 111syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  <" b "> ) concat  <" ( M `  b ) "> )  =  ( a concat  ( <" b "> concat  <" ( M `
 b ) "> ) ) )
113 df-s2 11767 . . . . . . . . . . . . . 14  |-  <" b
( M `  b
) ">  =  ( <" b "> concat  <" ( M `
 b ) "> )
114113oveq2i 6051 . . . . . . . . . . . . 13  |-  ( a concat  <" b ( M `
 b ) "> )  =  ( a concat  ( <" b "> concat  <" ( M `
 b ) "> ) )
115112, 114syl6eqr 2454 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  <" b "> ) concat  <" ( M `  b ) "> )  =  ( a concat  <" b ( M `  b ) "> ) )
116115oveq1d 6055 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( ( a concat  <" b "> ) concat  <" ( M `  b ) "> ) concat  ( M  o.  (reverse `  a ) ) )  =  ( ( a concat  <" b ( M `
 b ) "> ) concat  ( M  o.  (reverse `  a )
) ) )
117105, 110, 1163eqtr2rd 2443 . . . . . . . . . 10  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  <" b
( M `  b
) "> ) concat  ( M  o.  (reverse `  a
) ) )  =  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  (
a concat  <" b "> ) ) ) ) )
11875, 90, 1173eqtrd 2440 . . . . . . . . 9  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( # `  a ) ( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) b )  =  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  (
a concat  <" b "> ) ) ) ) )
1191, 36, 48, 73efgtf 15309 . . . . . . . . . . . 12  |-  ( ( a concat  ( M  o.  (reverse `  a ) ) )  e.  W  -> 
( ( T `  ( a concat  ( M  o.  (reverse `  a ) ) ) )  =  ( m  e.  ( 0 ... ( # `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) ) ,  u  e.  ( I  X.  2o )  |->  ( ( a concat 
( M  o.  (reverse `  a ) ) ) splice  <. m ,  m , 
<" u ( M `
 u ) "> >. ) )  /\  ( T `  ( a concat 
( M  o.  (reverse `  a ) ) ) ) : ( ( 0 ... ( # `  ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  X.  ( I  X.  2o ) ) --> W ) )
120119simprd 450 . . . . . . . . . . 11  |-  ( ( a concat  ( M  o.  (reverse `  a ) ) )  e.  W  -> 
( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) : ( ( 0 ... ( # `  ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  X.  ( I  X.  2o ) ) --> W )
121 ffn 5550 . . . . . . . . . . 11  |-  ( ( T `  ( a concat 
( M  o.  (reverse `  a ) ) ) ) : ( ( 0 ... ( # `  ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  X.  ( I  X.  2o ) ) --> W  ->  ( T `  ( a concat  ( M  o.  (reverse `  a
) ) ) )  Fn  ( ( 0 ... ( # `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) )  X.  (
I  X.  2o ) ) )
12255, 120, 1213syl 19 . . . . . . . . . 10  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( T `  ( a concat  ( M  o.  (reverse `  a
) ) ) )  Fn  ( ( 0 ... ( # `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) )  X.  (
I  X.  2o ) ) )
123 fnovrn 6180 . . . . . . . . . 10  |-  ( ( ( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) )  Fn  ( ( 0 ... ( # `  ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  X.  ( I  X.  2o ) )  /\  ( # `  a
)  e.  ( 0 ... ( # `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) )  /\  b  e.  ( I  X.  2o ) )  ->  (
( # `  a ) ( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) b )  e. 
ran  ( T `  ( a concat  ( M  o.  (reverse `  a ) ) ) ) )
124122, 71, 72, 123syl3anc 1184 . . . . . . . . 9  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( # `  a ) ( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) b )  e. 
ran  ( T `  ( a concat  ( M  o.  (reverse `  a ) ) ) ) )
125118, 124eqeltrrd 2479 . . . . . . . 8  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  e.  ran  ( T `
 ( a concat  ( M  o.  (reverse `  a
) ) ) ) )
1261, 36, 48, 73efgi2 15312 . . . . . . . 8  |-  ( ( ( a concat  ( M  o.  (reverse `  a
) ) )  e.  W  /\  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  e.  ran  ( T `
 ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  ->  ( a concat  ( M  o.  (reverse `  a
) ) )  .~  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  (
a concat  <" b "> ) ) ) ) )
12755, 125, 126syl2anc 643 . . . . . . 7  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
a concat  ( M  o.  (reverse `  a ) ) )  .~  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) ) )
12844, 127ersym 6876 . . . . . 6  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  ( a concat  ( M  o.  (reverse `  a
) ) ) )
12944ertr 6879 . . . . . 6  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  ( a concat 
( M  o.  (reverse `  a ) ) )  /\  ( a concat  ( M  o.  (reverse `  a
) ) )  .~  (/) )  ->  ( (
a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  (/) ) )
130128, 129mpand 657 . . . . 5  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  ( M  o.  (reverse `  a )
) )  .~  (/)  ->  (
( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  (/) ) )
131130expcom 425 . . . 4  |-  ( ( a  e. Word  ( I  X.  2o )  /\  b  e.  ( I  X.  2o ) )  -> 
( A  e.  W  ->  ( ( a concat  ( M  o.  (reverse `  a
) ) )  .~  (/) 
->  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  (
a concat  <" b "> ) ) ) )  .~  (/) ) ) )
132131a2d 24 . . 3  |-  ( ( a  e. Word  ( I  X.  2o )  /\  b  e.  ( I  X.  2o ) )  -> 
( ( A  e.  W  ->  ( a concat  ( M  o.  (reverse `  a
) ) )  .~  (/) )  ->  ( A  e.  W  ->  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  (/) ) ) )
13314, 20, 26, 32, 43, 132wrdind 11746 . 2  |-  ( A  e. Word  ( I  X.  2o )  ->  ( A  e.  W  ->  ( A concat  ( M  o.  (reverse `  A ) ) )  .~  (/) ) )
1344, 133mpcom 34 1  |-  ( A  e.  W  ->  ( A concat  ( M  o.  (reverse `  A ) ) )  .~  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916    \ cdif 3277   (/)c0 3588   <.cop 3777   <.cotp 3778   class class class wbr 4172    e. cmpt 4226    _I cid 4453    X. cxp 4835   ran crn 4838    o. ccom 4841    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   1oc1o 6676   2oc2o 6677    Er wer 6861   0cc0 8946    + caddc 8949   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444   ...cfz 10999   #chash 11573  Word cword 11672   concat cconcat 11673   <"cs1 11674   splice csplice 11676  reversecreverse 11677   <"cs2 11760   ~FG cefg 15293
This theorem is referenced by:  efginvrel1  15315  frgpinv  15351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-ot 3784  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-ec 6866  df-map 6979  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-fzo 11091  df-hash 11574  df-word 11678  df-concat 11679  df-s1 11680  df-substr 11681  df-splice 11682  df-reverse 11683  df-s2 11767  df-efg 15296
  Copyright terms: Public domain W3C validator