MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgi2 Structured version   Unicode version

Theorem efgi2 16346
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
Assertion
Ref Expression
efgi2  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  A  .~  B
)
Distinct variable groups:    y, z    v, n, w, y, z   
n, M, v, w   
n, W, v, w, y, z    y,  .~ , z    n, I, v, w, y, z
Allowed substitution hints:    A( y, z, w, v, n)    B( y, z, w, v, n)    .~ ( w, v, n)    T( y, z, w, v, n)    M( y, z)

Proof of Theorem efgi2
Dummy variables  a 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5802 . . . . . . . . . . 11  |-  ( a  =  A  ->  ( T `  a )  =  ( T `  A ) )
21rneqd 5178 . . . . . . . . . 10  |-  ( a  =  A  ->  ran  ( T `  a )  =  ran  ( T `
 A ) )
3 eceq1 7250 . . . . . . . . . 10  |-  ( a  =  A  ->  [ a ] r  =  [ A ] r )
42, 3sseq12d 3496 . . . . . . . . 9  |-  ( a  =  A  ->  ( ran  ( T `  a
)  C_  [ a ] r  <->  ran  ( T `
 A )  C_  [ A ] r ) )
54rspcv 3175 . . . . . . . 8  |-  ( A  e.  W  ->  ( A. a  e.  W  ran  ( T `  a
)  C_  [ a ] r  ->  ran  ( T `  A ) 
C_  [ A ]
r ) )
65adantr 465 . . . . . . 7  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  ( A. a  e.  W  ran  ( T `
 a )  C_  [ a ] r  ->  ran  ( T `  A
)  C_  [ A ] r ) )
7 ssel 3461 . . . . . . . . 9  |-  ( ran  ( T `  A
)  C_  [ A ] r  ->  ( B  e.  ran  ( T `
 A )  ->  B  e.  [ A ] r ) )
87com12 31 . . . . . . . 8  |-  ( B  e.  ran  ( T `
 A )  -> 
( ran  ( T `  A )  C_  [ A ] r  ->  B  e.  [ A ] r ) )
9 simpl 457 . . . . . . . . . . 11  |-  ( ( B  e.  [ A ] r  /\  A  e.  W )  ->  B  e.  [ A ] r )
10 elecg 7252 . . . . . . . . . . 11  |-  ( ( B  e.  [ A ] r  /\  A  e.  W )  ->  ( B  e.  [ A ] r  <->  A r B ) )
119, 10mpbid 210 . . . . . . . . . 10  |-  ( ( B  e.  [ A ] r  /\  A  e.  W )  ->  A
r B )
12 df-br 4404 . . . . . . . . . 10  |-  ( A r B  <->  <. A ,  B >.  e.  r )
1311, 12sylib 196 . . . . . . . . 9  |-  ( ( B  e.  [ A ] r  /\  A  e.  W )  ->  <. A ,  B >.  e.  r )
1413expcom 435 . . . . . . . 8  |-  ( A  e.  W  ->  ( B  e.  [ A ] r  ->  <. A ,  B >.  e.  r ) )
158, 14sylan9r 658 . . . . . . 7  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  ( ran  ( T `  A )  C_ 
[ A ] r  ->  <. A ,  B >.  e.  r ) )
166, 15syld 44 . . . . . 6  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  ( A. a  e.  W  ran  ( T `
 a )  C_  [ a ] r  ->  <. A ,  B >.  e.  r ) )
1716adantld 467 . . . . 5  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  ( ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a ) 
C_  [ a ] r )  ->  <. A ,  B >.  e.  r ) )
1817alrimiv 1686 . . . 4  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  A. r ( ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a ) 
C_  [ a ] r )  ->  <. A ,  B >.  e.  r ) )
19 opex 4667 . . . . 5  |-  <. A ,  B >.  e.  _V
2019elintab 4250 . . . 4  |-  ( <. A ,  B >.  e. 
|^| { r  |  ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a ) 
C_  [ a ] r ) }  <->  A. r
( ( r  Er  W  /\  A. a  e.  W  ran  ( T `
 a )  C_  [ a ] r )  ->  <. A ,  B >.  e.  r ) )
2118, 20sylibr 212 . . 3  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  <. A ,  B >.  e.  |^| { r  |  ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a
)  C_  [ a ] r ) } )
22 efgval.w . . . 4  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
23 efgval.r . . . 4  |-  .~  =  ( ~FG  `  I )
24 efgval2.m . . . 4  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
25 efgval2.t . . . 4  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
2622, 23, 24, 25efgval2 16345 . . 3  |-  .~  =  |^| { r  |  ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a ) 
C_  [ a ] r ) }
2721, 26syl6eleqr 2553 . 2  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  <. A ,  B >.  e.  .~  )
28 df-br 4404 . 2  |-  ( A  .~  B  <->  <. A ,  B >.  e.  .~  )
2927, 28sylibr 212 1  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  A  .~  B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1368    = wceq 1370    e. wcel 1758   {cab 2439   A.wral 2799    \ cdif 3436    C_ wss 3439   <.cop 3994   <.cotp 3996   |^|cint 4239   class class class wbr 4403    |-> cmpt 4461    _I cid 4742    X. cxp 4949   ran crn 4952   ` cfv 5529  (class class class)co 6203    |-> cmpt2 6205   1oc1o 7026   2oc2o 7027    Er wer 7211   [cec 7212   0cc0 9396   ...cfz 11557   #chash 12223  Word cword 12342   splice csplice 12347   <"cs2 12589   ~FG cefg 16327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-ot 3997  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-2o 7034  df-oadd 7037  df-er 7214  df-ec 7216  df-map 7329  df-pm 7330  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-card 8223  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-nn 10437  df-n0 10694  df-z 10761  df-uz 10976  df-fz 11558  df-fzo 11669  df-hash 12224  df-word 12350  df-concat 12352  df-s1 12353  df-substr 12354  df-splice 12355  df-s2 12596  df-efg 16330
This theorem is referenced by:  efginvrel2  16348  efgsrel  16355  efgcpbllemb  16376
  Copyright terms: Public domain W3C validator