MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgi1 Structured version   Unicode version

Theorem efgi1 16211
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
Assertion
Ref Expression
efgi1  |-  ( ( A  e.  W  /\  N  e.  ( 0 ... ( # `  A
) )  /\  J  e.  I )  ->  A  .~  ( A splice  <. N ,  N ,  <" <. J ,  1o >. <. J ,  (/)
>. "> >. )
)

Proof of Theorem efgi1
StepHypRef Expression
1 1on 6923 . . . . . . 7  |-  1o  e.  On
21elexi 2980 . . . . . 6  |-  1o  e.  _V
32prid2 3981 . . . . 5  |-  1o  e.  {
(/) ,  1o }
4 df2o3 6929 . . . . 5  |-  2o  =  { (/) ,  1o }
53, 4eleqtrri 2514 . . . 4  |-  1o  e.  2o
6 efgval.w . . . . 5  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
7 efgval.r . . . . 5  |-  .~  =  ( ~FG  `  I )
86, 7efgi 16209 . . . 4  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  1o  e.  2o ) )  ->  A  .~  ( A splice  <. N ,  N ,  <" <. J ,  1o >. <. J , 
( 1o  \  1o ) >. "> >. )
)
95, 8mpanr2 679 . . 3  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  J  e.  I )  ->  A  .~  ( A splice  <. N ,  N ,  <" <. J ,  1o >. <. J ,  ( 1o  \  1o )
>. "> >. )
)
1093impa 1177 . 2  |-  ( ( A  e.  W  /\  N  e.  ( 0 ... ( # `  A
) )  /\  J  e.  I )  ->  A  .~  ( A splice  <. N ,  N ,  <" <. J ,  1o >. <. J , 
( 1o  \  1o ) >. "> >. )
)
11 tru 1368 . . . 4  |- T.
12 eqidd 2442 . . . . 5  |-  ( T. 
->  <. J ,  1o >.  =  <. J ,  1o >. )
13 difid 3744 . . . . . . 7  |-  ( 1o 
\  1o )  =  (/)
1413opeq2i 4060 . . . . . 6  |-  <. J , 
( 1o  \  1o ) >.  =  <. J ,  (/)
>.
1514a1i 11 . . . . 5  |-  ( T. 
->  <. J ,  ( 1o  \  1o )
>.  =  <. J ,  (/)
>. )
1612, 15s2eqd 12485 . . . 4  |-  ( T. 
->  <" <. J ,  1o >. <. J ,  ( 1o  \  1o )
>. ">  =  <"
<. J ,  1o >. <. J ,  (/) >. "> )
17 oteq3 4067 . . . 4  |-  ( <" <. J ,  1o >. <. J ,  ( 1o  \  1o )
>. ">  =  <"
<. J ,  1o >. <. J ,  (/) >. ">  -> 
<. N ,  N ,  <" <. J ,  1o >. <. J ,  ( 1o  \  1o )
>. "> >.  =  <. N ,  N ,  <"
<. J ,  1o >. <. J ,  (/) >. "> >.
)
1811, 16, 17mp2b 10 . . 3  |-  <. N ,  N ,  <" <. J ,  1o >. <. J , 
( 1o  \  1o ) >. "> >.  =  <. N ,  N ,  <"
<. J ,  1o >. <. J ,  (/) >. "> >.
1918oveq2i 6101 . 2  |-  ( A splice  <. N ,  N ,  <" <. J ,  1o >. <. J ,  ( 1o  \  1o )
>. "> >. )  =  ( A splice  <. N ,  N ,  <" <. J ,  1o >. <. J ,  (/)
>. "> >. )
2010, 19syl6breq 4328 1  |-  ( ( A  e.  W  /\  N  e.  ( 0 ... ( # `  A
) )  /\  J  e.  I )  ->  A  .~  ( A splice  <. N ,  N ,  <" <. J ,  1o >. <. J ,  (/)
>. "> >. )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364   T. wtru 1365    e. wcel 1761    \ cdif 3322   (/)c0 3634   {cpr 3876   <.cop 3880   <.cotp 3882   class class class wbr 4289    _I cid 4627   Oncon0 4715    X. cxp 4834   ` cfv 5415  (class class class)co 6090   1oc1o 6909   2oc2o 6910   0cc0 9278   ...cfz 11433   #chash 12099  Word cword 12217   splice csplice 12222   <"cs2 12464   ~FG cefg 16196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-ot 3883  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-fzo 11545  df-hash 12100  df-word 12225  df-concat 12227  df-s1 12228  df-substr 12229  df-splice 12230  df-s2 12471  df-efg 16199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator