MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgcpbllema Structured version   Unicode version

Theorem efgcpbllema 16751
Description: Lemma for efgrelex 16748. Define an auxiliary equivalence relation  L such that  A L B if there are sequences from  A to  B passing through the same reduced word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
efgcpbllem.1  |-  L  =  { <. i ,  j
>.  |  ( {
i ,  j } 
C_  W  /\  (
( A concat  i ) concat  B )  .~  ( ( A concat  j ) concat  B
) ) }
Assertion
Ref Expression
efgcpbllema  |-  ( X L Y  <->  ( X  e.  W  /\  Y  e.  W  /\  ( ( A concat  X ) concat  B
)  .~  ( ( A concat  Y ) concat  B ) ) )
Distinct variable groups:    i, j, A    y, z    t, n, v, w, y, z   
i, m, n, t, v, w, x, M, j    i, k, T, j, m, t, x   
i, X, j    y,
i, z, W, j   
k, n, v, w, y, z, W, m, t, x    .~ , i, j, m, t, x, y, z    B, i, j    S, i, j    i, Y, j   
i, I, j, m, n, t, v, w, x, y, z    D, i, j, m, t
Allowed substitution hints:    A( x, y, z, w, v, t, k, m, n)    B( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    I( k)    L( x, y, z, w, v, t, i, j, k, m, n)    M( y, z, k)    X( x, y, z, w, v, t, k, m, n)    Y( x, y, z, w, v, t, k, m, n)

Proof of Theorem efgcpbllema
StepHypRef Expression
1 oveq2 6289 . . . . 5  |-  ( i  =  X  ->  ( A concat  i )  =  ( A concat  X ) )
21oveq1d 6296 . . . 4  |-  ( i  =  X  ->  (
( A concat  i ) concat  B )  =  ( ( A concat  X ) concat  B
) )
3 oveq2 6289 . . . . 5  |-  ( j  =  Y  ->  ( A concat  j )  =  ( A concat  Y ) )
43oveq1d 6296 . . . 4  |-  ( j  =  Y  ->  (
( A concat  j ) concat  B )  =  ( ( A concat  Y ) concat  B
) )
52, 4breqan12d 4452 . . 3  |-  ( ( i  =  X  /\  j  =  Y )  ->  ( ( ( A concat 
i ) concat  B )  .~  ( ( A concat  j
) concat  B )  <->  ( ( A concat  X ) concat  B )  .~  ( ( A concat  Y ) concat  B ) ) )
6 efgcpbllem.1 . . . 4  |-  L  =  { <. i ,  j
>.  |  ( {
i ,  j } 
C_  W  /\  (
( A concat  i ) concat  B )  .~  ( ( A concat  j ) concat  B
) ) }
7 vex 3098 . . . . . . 7  |-  i  e. 
_V
8 vex 3098 . . . . . . 7  |-  j  e. 
_V
97, 8prss 4169 . . . . . 6  |-  ( ( i  e.  W  /\  j  e.  W )  <->  { i ,  j } 
C_  W )
109anbi1i 695 . . . . 5  |-  ( ( ( i  e.  W  /\  j  e.  W
)  /\  ( ( A concat  i ) concat  B )  .~  ( ( A concat 
j ) concat  B )
)  <->  ( { i ,  j }  C_  W  /\  ( ( A concat 
i ) concat  B )  .~  ( ( A concat  j
) concat  B ) ) )
1110opabbii 4501 . . . 4  |-  { <. i ,  j >.  |  ( ( i  e.  W  /\  j  e.  W
)  /\  ( ( A concat  i ) concat  B )  .~  ( ( A concat 
j ) concat  B )
) }  =  { <. i ,  j >.  |  ( { i ,  j }  C_  W  /\  ( ( A concat 
i ) concat  B )  .~  ( ( A concat  j
) concat  B ) ) }
126, 11eqtr4i 2475 . . 3  |-  L  =  { <. i ,  j
>.  |  ( (
i  e.  W  /\  j  e.  W )  /\  ( ( A concat  i
) concat  B )  .~  (
( A concat  j ) concat  B ) ) }
135, 12brab2ga 5065 . 2  |-  ( X L Y  <->  ( ( X  e.  W  /\  Y  e.  W )  /\  ( ( A concat  X
) concat  B )  .~  (
( A concat  Y ) concat  B ) ) )
14 df-3an 976 . 2  |-  ( ( X  e.  W  /\  Y  e.  W  /\  ( ( A concat  X
) concat  B )  .~  (
( A concat  Y ) concat  B ) )  <->  ( ( X  e.  W  /\  Y  e.  W )  /\  ( ( A concat  X
) concat  B )  .~  (
( A concat  Y ) concat  B ) ) )
1513, 14bitr4i 252 1  |-  ( X L Y  <->  ( X  e.  W  /\  Y  e.  W  /\  ( ( A concat  X ) concat  B
)  .~  ( ( A concat  Y ) concat  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   A.wral 2793   {crab 2797    \ cdif 3458    C_ wss 3461   (/)c0 3770   {csn 4014   {cpr 4016   <.cop 4020   <.cotp 4022   U_ciun 4315   class class class wbr 4437   {copab 4494    |-> cmpt 4495    _I cid 4780    X. cxp 4987   ran crn 4990   ` cfv 5578  (class class class)co 6281    |-> cmpt2 6283   1oc1o 7125   2oc2o 7126   0cc0 9495   1c1 9496    - cmin 9810   ...cfz 11683  ..^cfzo 11806   #chash 12387  Word cword 12516   concat cconcat 12518   splice csplice 12521   <"cs2 12788   ~FG cefg 16703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-xp 4995  df-iota 5541  df-fv 5586  df-ov 6284
This theorem is referenced by:  efgcpbllemb  16752  efgcpbl  16753
  Copyright terms: Public domain W3C validator