MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgcpbl Structured version   Unicode version

Theorem efgcpbl 16580
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgcpbl  |-  ( ( A  e.  W  /\  B  e.  W  /\  X  .~  Y )  -> 
( ( A concat  X
) concat  B )  .~  (
( A concat  Y ) concat  B ) )
Distinct variable groups:    y, z    t, n, v, w, y, z, m, x    m, M    x, n, M, t, v, w    k, m, t, x, T    k, n, v, w, y, z, W, m, t, x    .~ , m, t, x, y, z    m, I, n, t, v, w, x, y, z    D, m, t
Allowed substitution hints:    A( x, y, z, w, v, t, k, m, n)    B( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    I( k)    M( y, z, k)    X( x, y, z, w, v, t, k, m, n)    Y( x, y, z, w, v, t, k, m, n)

Proof of Theorem efgcpbl
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . 5  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . . . 5  |-  .~  =  ( ~FG  `  I )
3 efgval2.m . . . . 5  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4 efgval2.t . . . . 5  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
5 efgred.d . . . . 5  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
6 efgred.s . . . . 5  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
7 eqid 2467 . . . . 5  |-  { <. i ,  j >.  |  ( { i ,  j }  C_  W  /\  ( ( A concat  i
) concat  B )  .~  (
( A concat  j ) concat  B ) ) }  =  { <. i ,  j
>.  |  ( {
i ,  j } 
C_  W  /\  (
( A concat  i ) concat  B )  .~  ( ( A concat  j ) concat  B
) ) }
81, 2, 3, 4, 5, 6, 7efgcpbllemb 16579 . . . 4  |-  ( ( A  e.  W  /\  B  e.  W )  ->  .~  C_  { <. i ,  j >.  |  ( { i ,  j }  C_  W  /\  ( ( A concat  i
) concat  B )  .~  (
( A concat  j ) concat  B ) ) } )
98ssbrd 4488 . . 3  |-  ( ( A  e.  W  /\  B  e.  W )  ->  ( X  .~  Y  ->  X { <. i ,  j >.  |  ( { i ,  j }  C_  W  /\  ( ( A concat  i
) concat  B )  .~  (
( A concat  j ) concat  B ) ) } Y
) )
1093impia 1193 . 2  |-  ( ( A  e.  W  /\  B  e.  W  /\  X  .~  Y )  ->  X { <. i ,  j
>.  |  ( {
i ,  j } 
C_  W  /\  (
( A concat  i ) concat  B )  .~  ( ( A concat  j ) concat  B
) ) } Y
)
111, 2, 3, 4, 5, 6, 7efgcpbllema 16578 . . 3  |-  ( X { <. i ,  j
>.  |  ( {
i ,  j } 
C_  W  /\  (
( A concat  i ) concat  B )  .~  ( ( A concat  j ) concat  B
) ) } Y  <->  ( X  e.  W  /\  Y  e.  W  /\  ( ( A concat  X
) concat  B )  .~  (
( A concat  Y ) concat  B ) ) )
1211simp3bi 1013 . 2  |-  ( X { <. i ,  j
>.  |  ( {
i ,  j } 
C_  W  /\  (
( A concat  i ) concat  B )  .~  ( ( A concat  j ) concat  B
) ) } Y  ->  ( ( A concat  X
) concat  B )  .~  (
( A concat  Y ) concat  B ) )
1310, 12syl 16 1  |-  ( ( A  e.  W  /\  B  e.  W  /\  X  .~  Y )  -> 
( ( A concat  X
) concat  B )  .~  (
( A concat  Y ) concat  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   {crab 2818    \ cdif 3473    C_ wss 3476   (/)c0 3785   {csn 4027   {cpr 4029   <.cop 4033   <.cotp 4035   U_ciun 4325   class class class wbr 4447   {copab 4504    |-> cmpt 4505    _I cid 4790    X. cxp 4997   ran crn 5000   ` cfv 5588  (class class class)co 6284    |-> cmpt2 6286   1oc1o 7123   2oc2o 7124   0cc0 9492   1c1 9493    - cmin 9805   ...cfz 11672  ..^cfzo 11792   #chash 12373  Word cword 12500   concat cconcat 12502   splice csplice 12505   <"cs2 12769   ~FG cefg 16530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-ot 4036  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-ec 7313  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-n0 10796  df-z 10865  df-uz 11083  df-fz 11673  df-fzo 11793  df-hash 12374  df-word 12508  df-concat 12510  df-s1 12511  df-substr 12512  df-splice 12513  df-s2 12776  df-efg 16533
This theorem is referenced by:  efgcpbl2  16581
  Copyright terms: Public domain W3C validator