MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eff1olem Structured version   Unicode version

Theorem eff1olem 22684
Description: The exponential function maps the set  S, of complex numbers with imaginary part in a real interval of length  2  x.  pi, one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) (Proof shortened by Mario Carneiro, 13-May-2014.)
Hypotheses
Ref Expression
eff1olem.1  |-  F  =  ( w  e.  D  |->  ( exp `  (
_i  x.  w )
) )
eff1olem.2  |-  S  =  ( `' Im " D )
eff1olem.3  |-  ( ph  ->  D  C_  RR )
eff1olem.4  |-  ( (
ph  /\  ( x  e.  D  /\  y  e.  D ) )  -> 
( abs `  (
x  -  y ) )  <  ( 2  x.  pi ) )
eff1olem.5  |-  ( (
ph  /\  z  e.  RR )  ->  E. y  e.  D  ( (
z  -  y )  /  ( 2  x.  pi ) )  e.  ZZ )
Assertion
Ref Expression
eff1olem  |-  ( ph  ->  ( exp  |`  S ) : S -1-1-onto-> ( CC  \  {
0 } ) )
Distinct variable groups:    x, w, y, z, D    x, F, y, z    ph, w, x, y, z    x, S, y
Allowed substitution hints:    S( z, w)    F( w)

Proof of Theorem eff1olem
StepHypRef Expression
1 cnvimass 5356 . . . 4  |-  ( `' Im " D ) 
C_  dom  Im
2 eff1olem.2 . . . 4  |-  S  =  ( `' Im " D )
3 imf 12908 . . . . . 6  |-  Im : CC
--> RR
43fdmi 5735 . . . . 5  |-  dom  Im  =  CC
54eqcomi 2480 . . . 4  |-  CC  =  dom  Im
61, 2, 53sstr4i 3543 . . 3  |-  S  C_  CC
7 eff2 13694 . . . . . . 7  |-  exp : CC
--> ( CC  \  {
0 } )
87a1i 11 . . . . . 6  |-  ( S 
C_  CC  ->  exp : CC
--> ( CC  \  {
0 } ) )
98feqmptd 5919 . . . . 5  |-  ( S 
C_  CC  ->  exp  =  ( y  e.  CC  |->  ( exp `  y ) ) )
109reseq1d 5271 . . . 4  |-  ( S 
C_  CC  ->  ( exp  |`  S )  =  ( ( y  e.  CC  |->  ( exp `  y ) )  |`  S )
)
11 resmpt 5322 . . . 4  |-  ( S 
C_  CC  ->  ( ( y  e.  CC  |->  ( exp `  y ) )  |`  S )  =  ( y  e.  S  |->  ( exp `  y
) ) )
1210, 11eqtrd 2508 . . 3  |-  ( S 
C_  CC  ->  ( exp  |`  S )  =  ( y  e.  S  |->  ( exp `  y ) ) )
136, 12ax-mp 5 . 2  |-  ( exp  |`  S )  =  ( y  e.  S  |->  ( exp `  y ) )
146sseli 3500 . . . 4  |-  ( y  e.  S  ->  y  e.  CC )
157ffvelrni 6019 . . . 4  |-  ( y  e.  CC  ->  ( exp `  y )  e.  ( CC  \  {
0 } ) )
1614, 15syl 16 . . 3  |-  ( y  e.  S  ->  ( exp `  y )  e.  ( CC  \  {
0 } ) )
1716adantl 466 . 2  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  y )  e.  ( CC  \  {
0 } ) )
18 simpr 461 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  x  e.  ( CC  \  { 0 } ) )
19 eldifsn 4152 . . . . . . . . . 10  |-  ( x  e.  ( CC  \  { 0 } )  <-> 
( x  e.  CC  /\  x  =/=  0 ) )
2018, 19sylib 196 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x  e.  CC  /\  x  =/=  0 ) )
2120simpld 459 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  x  e.  CC )
2220simprd 463 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  x  =/=  0 )
2321, 22absrpcld 13241 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  x
)  e.  RR+ )
24 reeff1o 22592 . . . . . . . . 9  |-  ( exp  |`  RR ) : RR -1-1-onto-> RR+
25 f1ocnv 5827 . . . . . . . . 9  |-  ( ( exp  |`  RR ) : RR -1-1-onto-> RR+  ->  `' ( exp  |`  RR ) :
RR+
-1-1-onto-> RR )
26 f1of 5815 . . . . . . . . 9  |-  ( `' ( exp  |`  RR ) : RR+
-1-1-onto-> RR  ->  `' ( exp  |`  RR ) : RR+ --> RR )
2724, 25, 26mp2b 10 . . . . . . . 8  |-  `' ( exp  |`  RR ) : RR+ --> RR
2827ffvelrni 6019 . . . . . . 7  |-  ( ( abs `  x )  e.  RR+  ->  ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  e.  RR )
2923, 28syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( `' ( exp  |`  RR ) `  ( abs `  x ) )  e.  RR )
3029recnd 9621 . . . . 5  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( `' ( exp  |`  RR ) `  ( abs `  x ) )  e.  CC )
31 ax-icn 9550 . . . . . 6  |-  _i  e.  CC
32 eff1olem.3 . . . . . . . . 9  |-  ( ph  ->  D  C_  RR )
3332adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  D  C_  RR )
34 eff1olem.1 . . . . . . . . . . . 12  |-  F  =  ( w  e.  D  |->  ( exp `  (
_i  x.  w )
) )
35 eqid 2467 . . . . . . . . . . . 12  |-  ( `' abs " { 1 } )  =  ( `' abs " { 1 } )
36 eff1olem.4 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  D  /\  y  e.  D ) )  -> 
( abs `  (
x  -  y ) )  <  ( 2  x.  pi ) )
37 eff1olem.5 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  RR )  ->  E. y  e.  D  ( (
z  -  y )  /  ( 2  x.  pi ) )  e.  ZZ )
38 eqid 2467 . . . . . . . . . . . 12  |-  ( sin  |`  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )  =  ( sin  |`  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) )
3934, 35, 32, 36, 37, 38efif1olem4 22681 . . . . . . . . . . 11  |-  ( ph  ->  F : D -1-1-onto-> ( `' abs " { 1 } ) )
40 f1ocnv 5827 . . . . . . . . . . 11  |-  ( F : D -1-1-onto-> ( `' abs " {
1 } )  ->  `' F : ( `' abs " { 1 } ) -1-1-onto-> D )
41 f1of 5815 . . . . . . . . . . 11  |-  ( `' F : ( `' abs " { 1 } ) -1-1-onto-> D  ->  `' F : ( `' abs " { 1 } ) --> D )
4239, 40, 413syl 20 . . . . . . . . . 10  |-  ( ph  ->  `' F : ( `' abs " { 1 } ) --> D )
4342adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  `' F : ( `' abs " { 1 } ) --> D )
4421abscld 13229 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  x
)  e.  RR )
4544recnd 9621 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  x
)  e.  CC )
4621, 22absne0d 13240 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  x
)  =/=  0 )
4721, 45, 46divcld 10319 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x  /  ( abs `  x ) )  e.  CC )
4821, 45, 46absdivd 13248 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  (
x  /  ( abs `  x ) ) )  =  ( ( abs `  x )  /  ( abs `  ( abs `  x
) ) ) )
49 absidm 13118 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  ( abs `  ( abs `  x
) )  =  ( abs `  x ) )
5021, 49syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  ( abs `  x ) )  =  ( abs `  x
) )
5150oveq2d 6299 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( abs `  x
)  /  ( abs `  ( abs `  x
) ) )  =  ( ( abs `  x
)  /  ( abs `  x ) ) )
5245, 46dividd 10317 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( abs `  x
)  /  ( abs `  x ) )  =  1 )
5348, 51, 523eqtrd 2512 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  (
x  /  ( abs `  x ) ) )  =  1 )
54 absf 13132 . . . . . . . . . . 11  |-  abs : CC
--> RR
55 ffn 5730 . . . . . . . . . . 11  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
56 fniniseg 6001 . . . . . . . . . . 11  |-  ( abs 
Fn  CC  ->  ( ( x  /  ( abs `  x ) )  e.  ( `' abs " {
1 } )  <->  ( (
x  /  ( abs `  x ) )  e.  CC  /\  ( abs `  ( x  /  ( abs `  x ) ) )  =  1 ) ) )
5754, 55, 56mp2b 10 . . . . . . . . . 10  |-  ( ( x  /  ( abs `  x ) )  e.  ( `' abs " {
1 } )  <->  ( (
x  /  ( abs `  x ) )  e.  CC  /\  ( abs `  ( x  /  ( abs `  x ) ) )  =  1 ) )
5847, 53, 57sylanbrc 664 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x  /  ( abs `  x ) )  e.  ( `' abs " { 1 } ) )
5943, 58ffvelrnd 6021 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( `' F `  ( x  /  ( abs `  x ) ) )  e.  D )
6033, 59sseldd 3505 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( `' F `  ( x  /  ( abs `  x ) ) )  e.  RR )
6160recnd 9621 . . . . . 6  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( `' F `  ( x  /  ( abs `  x ) ) )  e.  CC )
62 mulcl 9575 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( `' F `  ( x  /  ( abs `  x
) ) )  e.  CC )  ->  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) )  e.  CC )
6331, 61, 62sylancr 663 . . . . 5  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) )  e.  CC )
6430, 63addcld 9614 . . . 4  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( `' ( exp  |`  RR ) `  ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  CC )
6529, 60crimd 13027 . . . . 5  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( Im `  (
( `' ( exp  |`  RR ) `  ( abs `  x ) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  =  ( `' F `  ( x  /  ( abs `  x
) ) ) )
6665, 59eqeltrd 2555 . . . 4  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( Im `  (
( `' ( exp  |`  RR ) `  ( abs `  x ) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  e.  D
)
67 ffn 5730 . . . . 5  |-  ( Im : CC --> RR  ->  Im  Fn  CC )
68 elpreima 6000 . . . . 5  |-  ( Im  Fn  CC  ->  (
( ( `' ( exp  |`  RR ) `  ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  ( `' Im " D )  <-> 
( ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  CC  /\  ( Im `  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  e.  D
) ) )
693, 67, 68mp2b 10 . . . 4  |-  ( ( ( `' ( exp  |`  RR ) `  ( abs `  x ) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  ( `' Im " D )  <-> 
( ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  CC  /\  ( Im `  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  e.  D
) )
7064, 66, 69sylanbrc 664 . . 3  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( `' ( exp  |`  RR ) `  ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  ( `' Im " D ) )
7170, 2syl6eleqr 2566 . 2  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( `' ( exp  |`  RR ) `  ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  S )
72 efadd 13690 . . . . . . 7  |-  ( ( ( `' ( exp  |`  RR ) `  ( abs `  x ) )  e.  CC  /\  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) )  e.  CC )  -> 
( exp `  (
( `' ( exp  |`  RR ) `  ( abs `  x ) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  =  ( ( exp `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) )  x.  ( exp `  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
7330, 63, 72syl2anc 661 . . . . . 6  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( exp `  (
( `' ( exp  |`  RR ) `  ( abs `  x ) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  =  ( ( exp `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) )  x.  ( exp `  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
74 fvres 5879 . . . . . . . . 9  |-  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  e.  RR  ->  ( ( exp  |`  RR ) `
 ( `' ( exp  |`  RR ) `  ( abs `  x
) ) )  =  ( exp `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) ) )
7529, 74syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( exp  |`  RR ) `
 ( `' ( exp  |`  RR ) `  ( abs `  x
) ) )  =  ( exp `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) ) )
76 f1ocnvfv2 6170 . . . . . . . . 9  |-  ( ( ( exp  |`  RR ) : RR -1-1-onto-> RR+  /\  ( abs `  x )  e.  RR+ )  ->  ( ( exp  |`  RR ) `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) )  =  ( abs `  x
) )
7724, 23, 76sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( exp  |`  RR ) `
 ( `' ( exp  |`  RR ) `  ( abs `  x
) ) )  =  ( abs `  x
) )
7875, 77eqtr3d 2510 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( exp `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) )  =  ( abs `  x
) )
79 oveq2 6291 . . . . . . . . . . 11  |-  ( z  =  ( `' F `  ( x  /  ( abs `  x ) ) )  ->  ( _i  x.  z )  =  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )
8079fveq2d 5869 . . . . . . . . . 10  |-  ( z  =  ( `' F `  ( x  /  ( abs `  x ) ) )  ->  ( exp `  ( _i  x.  z
) )  =  ( exp `  ( _i  x.  ( `' F `  ( x  /  ( abs `  x ) ) ) ) ) )
81 oveq2 6291 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  (
_i  x.  w )  =  ( _i  x.  z ) )
8281fveq2d 5869 . . . . . . . . . . . 12  |-  ( w  =  z  ->  ( exp `  ( _i  x.  w ) )  =  ( exp `  (
_i  x.  z )
) )
8382cbvmptv 4538 . . . . . . . . . . 11  |-  ( w  e.  D  |->  ( exp `  ( _i  x.  w
) ) )  =  ( z  e.  D  |->  ( exp `  (
_i  x.  z )
) )
8434, 83eqtri 2496 . . . . . . . . . 10  |-  F  =  ( z  e.  D  |->  ( exp `  (
_i  x.  z )
) )
85 fvex 5875 . . . . . . . . . 10  |-  ( exp `  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  _V
8680, 84, 85fvmpt 5949 . . . . . . . . 9  |-  ( ( `' F `  ( x  /  ( abs `  x
) ) )  e.  D  ->  ( F `  ( `' F `  ( x  /  ( abs `  x ) ) ) )  =  ( exp `  ( _i  x.  ( `' F `  ( x  /  ( abs `  x ) ) ) ) ) )
8759, 86syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( F `  ( `' F `  ( x  /  ( abs `  x
) ) ) )  =  ( exp `  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )
8839adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  F : D -1-1-onto-> ( `' abs " {
1 } ) )
89 f1ocnvfv2 6170 . . . . . . . . 9  |-  ( ( F : D -1-1-onto-> ( `' abs " { 1 } )  /\  (
x  /  ( abs `  x ) )  e.  ( `' abs " {
1 } ) )  ->  ( F `  ( `' F `  ( x  /  ( abs `  x
) ) ) )  =  ( x  / 
( abs `  x
) ) )
9088, 58, 89syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( F `  ( `' F `  ( x  /  ( abs `  x
) ) ) )  =  ( x  / 
( abs `  x
) ) )
9187, 90eqtr3d 2510 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( exp `  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  =  ( x  /  ( abs `  x
) ) )
9278, 91oveq12d 6301 . . . . . 6  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( exp `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) )  x.  ( exp `  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  =  ( ( abs `  x
)  x.  ( x  /  ( abs `  x
) ) ) )
9321, 45, 46divcan2d 10321 . . . . . 6  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( abs `  x
)  x.  ( x  /  ( abs `  x
) ) )  =  x )
9473, 92, 933eqtrrd 2513 . . . . 5  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  x  =  ( exp `  ( ( `' ( exp  |`  RR ) `  ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
9594adantrl 715 . . . 4  |-  ( (
ph  /\  ( y  e.  S  /\  x  e.  ( CC  \  {
0 } ) ) )  ->  x  =  ( exp `  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
96 fveq2 5865 . . . . 5  |-  ( y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  ->  ( exp `  y )  =  ( exp `  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
9796eqeq2d 2481 . . . 4  |-  ( y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  ->  ( x  =  ( exp `  y
)  <->  x  =  ( exp `  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) ) )
9895, 97syl5ibrcom 222 . . 3  |-  ( (
ph  /\  ( y  e.  S  /\  x  e.  ( CC  \  {
0 } ) ) )  ->  ( y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  ->  x  =  ( exp `  y ) ) )
9914adantl 466 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  y  e.  CC )
10099replimd 12992 . . . . . 6  |-  ( (
ph  /\  y  e.  S )  ->  y  =  ( ( Re
`  y )  +  ( _i  x.  (
Im `  y )
) ) )
101 absef 13792 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  ( abs `  ( exp `  y
) )  =  ( exp `  ( Re
`  y ) ) )
10299, 101syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  S )  ->  ( abs `  ( exp `  y
) )  =  ( exp `  ( Re
`  y ) ) )
10399recld 12989 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  S )  ->  (
Re `  y )  e.  RR )
104 fvres 5879 . . . . . . . . . . 11  |-  ( ( Re `  y )  e.  RR  ->  (
( exp  |`  RR ) `
 ( Re `  y ) )  =  ( exp `  (
Re `  y )
) )
105103, 104syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  S )  ->  (
( exp  |`  RR ) `
 ( Re `  y ) )  =  ( exp `  (
Re `  y )
) )
106102, 105eqtr4d 2511 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  S )  ->  ( abs `  ( exp `  y
) )  =  ( ( exp  |`  RR ) `
 ( Re `  y ) ) )
107106fveq2d 5869 . . . . . . . 8  |-  ( (
ph  /\  y  e.  S )  ->  ( `' ( exp  |`  RR ) `
 ( abs `  ( exp `  y ) ) )  =  ( `' ( exp  |`  RR ) `
 ( ( exp  |`  RR ) `  (
Re `  y )
) ) )
108 f1ocnvfv1 6169 . . . . . . . . 9  |-  ( ( ( exp  |`  RR ) : RR -1-1-onto-> RR+  /\  ( Re
`  y )  e.  RR )  ->  ( `' ( exp  |`  RR ) `
 ( ( exp  |`  RR ) `  (
Re `  y )
) )  =  ( Re `  y ) )
10924, 103, 108sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  y  e.  S )  ->  ( `' ( exp  |`  RR ) `
 ( ( exp  |`  RR ) `  (
Re `  y )
) )  =  ( Re `  y ) )
110107, 109eqtrd 2508 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  ( `' ( exp  |`  RR ) `
 ( abs `  ( exp `  y ) ) )  =  ( Re
`  y ) )
11199imcld 12990 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  S )  ->  (
Im `  y )  e.  RR )
112111recnd 9621 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  S )  ->  (
Im `  y )  e.  CC )
113 mulcl 9575 . . . . . . . . . . . . . 14  |-  ( ( _i  e.  CC  /\  ( Im `  y )  e.  CC )  -> 
( _i  x.  (
Im `  y )
)  e.  CC )
11431, 112, 113sylancr 663 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  (
_i  x.  ( Im `  y ) )  e.  CC )
115 efcl 13679 . . . . . . . . . . . . 13  |-  ( ( _i  x.  ( Im
`  y ) )  e.  CC  ->  ( exp `  ( _i  x.  ( Im `  y ) ) )  e.  CC )
116114, 115syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  ( _i  x.  ( Im `  y ) ) )  e.  CC )
117103recnd 9621 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  (
Re `  y )  e.  CC )
118 efcl 13679 . . . . . . . . . . . . 13  |-  ( ( Re `  y )  e.  CC  ->  ( exp `  ( Re `  y ) )  e.  CC )
119117, 118syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  ( Re `  y ) )  e.  CC )
120 efne0 13692 . . . . . . . . . . . . 13  |-  ( ( Re `  y )  e.  CC  ->  ( exp `  ( Re `  y ) )  =/=  0 )
121117, 120syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  ( Re `  y ) )  =/=  0 )
122116, 119, 121divcan3d 10324 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  S )  ->  (
( ( exp `  (
Re `  y )
)  x.  ( exp `  ( _i  x.  (
Im `  y )
) ) )  / 
( exp `  (
Re `  y )
) )  =  ( exp `  ( _i  x.  ( Im `  y ) ) ) )
123100fveq2d 5869 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  y )  =  ( exp `  (
( Re `  y
)  +  ( _i  x.  ( Im `  y ) ) ) ) )
124 efadd 13690 . . . . . . . . . . . . . 14  |-  ( ( ( Re `  y
)  e.  CC  /\  ( _i  x.  (
Im `  y )
)  e.  CC )  ->  ( exp `  (
( Re `  y
)  +  ( _i  x.  ( Im `  y ) ) ) )  =  ( ( exp `  ( Re
`  y ) )  x.  ( exp `  (
_i  x.  ( Im `  y ) ) ) ) )
125117, 114, 124syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  ( ( Re
`  y )  +  ( _i  x.  (
Im `  y )
) ) )  =  ( ( exp `  (
Re `  y )
)  x.  ( exp `  ( _i  x.  (
Im `  y )
) ) ) )
126123, 125eqtrd 2508 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  y )  =  ( ( exp `  (
Re `  y )
)  x.  ( exp `  ( _i  x.  (
Im `  y )
) ) ) )
127126, 102oveq12d 6301 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  S )  ->  (
( exp `  y
)  /  ( abs `  ( exp `  y
) ) )  =  ( ( ( exp `  ( Re `  y
) )  x.  ( exp `  ( _i  x.  ( Im `  y ) ) ) )  / 
( exp `  (
Re `  y )
) ) )
128 elpreima 6000 . . . . . . . . . . . . . . . 16  |-  ( Im  Fn  CC  ->  (
y  e.  ( `' Im " D )  <-> 
( y  e.  CC  /\  ( Im `  y
)  e.  D ) ) )
1293, 67, 128mp2b 10 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( `' Im " D )  <->  ( y  e.  CC  /\  ( Im
`  y )  e.  D ) )
130129simprbi 464 . . . . . . . . . . . . . 14  |-  ( y  e.  ( `' Im " D )  ->  (
Im `  y )  e.  D )
131130, 2eleq2s 2575 . . . . . . . . . . . . 13  |-  ( y  e.  S  ->  (
Im `  y )  e.  D )
132131adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  (
Im `  y )  e.  D )
133 oveq2 6291 . . . . . . . . . . . . . 14  |-  ( w  =  ( Im `  y )  ->  (
_i  x.  w )  =  ( _i  x.  ( Im `  y ) ) )
134133fveq2d 5869 . . . . . . . . . . . . 13  |-  ( w  =  ( Im `  y )  ->  ( exp `  ( _i  x.  w ) )  =  ( exp `  (
_i  x.  ( Im `  y ) ) ) )
135 fvex 5875 . . . . . . . . . . . . 13  |-  ( exp `  ( _i  x.  (
Im `  y )
) )  e.  _V
136134, 34, 135fvmpt 5949 . . . . . . . . . . . 12  |-  ( ( Im `  y )  e.  D  ->  ( F `  ( Im `  y ) )  =  ( exp `  (
_i  x.  ( Im `  y ) ) ) )
137132, 136syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  S )  ->  ( F `  ( Im `  y ) )  =  ( exp `  (
_i  x.  ( Im `  y ) ) ) )
138122, 127, 1373eqtr4d 2518 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  S )  ->  (
( exp `  y
)  /  ( abs `  ( exp `  y
) ) )  =  ( F `  (
Im `  y )
) )
139138fveq2d 5869 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  S )  ->  ( `' F `  ( ( exp `  y )  /  ( abs `  ( exp `  y ) ) ) )  =  ( `' F `  ( F `
 ( Im `  y ) ) ) )
140 f1ocnvfv1 6169 . . . . . . . . . 10  |-  ( ( F : D -1-1-onto-> ( `' abs " { 1 } )  /\  (
Im `  y )  e.  D )  ->  ( `' F `  ( F `
 ( Im `  y ) ) )  =  ( Im `  y ) )
14139, 131, 140syl2an 477 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  S )  ->  ( `' F `  ( F `
 ( Im `  y ) ) )  =  ( Im `  y ) )
142139, 141eqtrd 2508 . . . . . . . 8  |-  ( (
ph  /\  y  e.  S )  ->  ( `' F `  ( ( exp `  y )  /  ( abs `  ( exp `  y ) ) ) )  =  ( Im `  y ) )
143142oveq2d 6299 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  (
_i  x.  ( `' F `  ( ( exp `  y )  / 
( abs `  ( exp `  y ) ) ) ) )  =  ( _i  x.  (
Im `  y )
) )
144110, 143oveq12d 6301 . . . . . 6  |-  ( (
ph  /\  y  e.  S )  ->  (
( `' ( exp  |`  RR ) `  ( abs `  ( exp `  y
) ) )  +  ( _i  x.  ( `' F `  ( ( exp `  y )  /  ( abs `  ( exp `  y ) ) ) ) ) )  =  ( ( Re
`  y )  +  ( _i  x.  (
Im `  y )
) ) )
145100, 144eqtr4d 2511 . . . . 5  |-  ( (
ph  /\  y  e.  S )  ->  y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  ( exp `  y ) ) )  +  ( _i  x.  ( `' F `  ( ( exp `  y
)  /  ( abs `  ( exp `  y
) ) ) ) ) ) )
146 fveq2 5865 . . . . . . . 8  |-  ( x  =  ( exp `  y
)  ->  ( abs `  x )  =  ( abs `  ( exp `  y ) ) )
147146fveq2d 5869 . . . . . . 7  |-  ( x  =  ( exp `  y
)  ->  ( `' ( exp  |`  RR ) `  ( abs `  x
) )  =  ( `' ( exp  |`  RR ) `
 ( abs `  ( exp `  y ) ) ) )
148 id 22 . . . . . . . . . 10  |-  ( x  =  ( exp `  y
)  ->  x  =  ( exp `  y ) )
149148, 146oveq12d 6301 . . . . . . . . 9  |-  ( x  =  ( exp `  y
)  ->  ( x  /  ( abs `  x
) )  =  ( ( exp `  y
)  /  ( abs `  ( exp `  y
) ) ) )
150149fveq2d 5869 . . . . . . . 8  |-  ( x  =  ( exp `  y
)  ->  ( `' F `  ( x  /  ( abs `  x
) ) )  =  ( `' F `  ( ( exp `  y
)  /  ( abs `  ( exp `  y
) ) ) ) )
151150oveq2d 6299 . . . . . . 7  |-  ( x  =  ( exp `  y
)  ->  ( _i  x.  ( `' F `  ( x  /  ( abs `  x ) ) ) )  =  ( _i  x.  ( `' F `  ( ( exp `  y )  /  ( abs `  ( exp `  y ) ) ) ) ) )
152147, 151oveq12d 6301 . . . . . 6  |-  ( x  =  ( exp `  y
)  ->  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  ( exp `  y ) ) )  +  ( _i  x.  ( `' F `  ( ( exp `  y
)  /  ( abs `  ( exp `  y
) ) ) ) ) ) )
153152eqeq2d 2481 . . . . 5  |-  ( x  =  ( exp `  y
)  ->  ( y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  <->  y  =  ( ( `' ( exp  |`  RR ) `  ( abs `  ( exp `  y
) ) )  +  ( _i  x.  ( `' F `  ( ( exp `  y )  /  ( abs `  ( exp `  y ) ) ) ) ) ) ) )
154145, 153syl5ibrcom 222 . . . 4  |-  ( (
ph  /\  y  e.  S )  ->  (
x  =  ( exp `  y )  ->  y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
155154adantrr 716 . . 3  |-  ( (
ph  /\  ( y  e.  S  /\  x  e.  ( CC  \  {
0 } ) ) )  ->  ( x  =  ( exp `  y
)  ->  y  =  ( ( `' ( exp  |`  RR ) `  ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
15698, 155impbid 191 . 2  |-  ( (
ph  /\  ( y  e.  S  /\  x  e.  ( CC  \  {
0 } ) ) )  ->  ( y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  <->  x  =  ( exp `  y ) ) )
15713, 17, 71, 156f1o2d 6510 1  |-  ( ph  ->  ( exp  |`  S ) : S -1-1-onto-> ( CC  \  {
0 } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2815    \ cdif 3473    C_ wss 3476   {csn 4027   class class class wbr 4447    |-> cmpt 4505   `'ccnv 4998   dom cdm 4999    |` cres 5001   "cima 5002    Fn wfn 5582   -->wf 5583   -1-1-onto->wf1o 5586   ` cfv 5587  (class class class)co 6283   CCcc 9489   RRcr 9490   0cc0 9491   1c1 9492   _ici 9493    + caddc 9494    x. cmul 9496    < clt 9627    - cmin 9804   -ucneg 9805    / cdiv 10205   2c2 10584   ZZcz 10863   RR+crp 11219   [,]cicc 11531   Recre 12892   Imcim 12893   abscabs 13029   expce 13658   sincsin 13660   picpi 13663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569  ax-addf 9570  ax-mulf 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-of 6523  df-om 6680  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7829  df-fi 7870  df-sup 7900  df-oi 7934  df-card 8319  df-cda 8547  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-4 10595  df-5 10596  df-6 10597  df-7 10598  df-8 10599  df-9 10600  df-10 10601  df-n0 10795  df-z 10864  df-dec 10976  df-uz 11082  df-q 11182  df-rp 11220  df-xneg 11317  df-xadd 11318  df-xmul 11319  df-ioo 11532  df-ioc 11533  df-ico 11534  df-icc 11535  df-fz 11672  df-fzo 11792  df-fl 11896  df-mod 11964  df-seq 12075  df-exp 12134  df-fac 12321  df-bc 12348  df-hash 12373  df-shft 12862  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-limsup 13256  df-clim 13273  df-rlim 13274  df-sum 13471  df-ef 13664  df-sin 13666  df-cos 13667  df-pi 13669  df-struct 14491  df-ndx 14492  df-slot 14493  df-base 14494  df-sets 14495  df-ress 14496  df-plusg 14567  df-mulr 14568  df-starv 14569  df-sca 14570  df-vsca 14571  df-ip 14572  df-tset 14573  df-ple 14574  df-ds 14576  df-unif 14577  df-hom 14578  df-cco 14579  df-rest 14677  df-topn 14678  df-0g 14696  df-gsum 14697  df-topgen 14698  df-pt 14699  df-prds 14702  df-xrs 14756  df-qtop 14761  df-imas 14762  df-xps 14764  df-mre 14840  df-mrc 14841  df-acs 14843  df-mnd 15731  df-submnd 15784  df-mulg 15867  df-cntz 16157  df-cmn 16603  df-psmet 18198  df-xmet 18199  df-met 18200  df-bl 18201  df-mopn 18202  df-fbas 18203  df-fg 18204  df-cnfld 18208  df-top 19182  df-bases 19184  df-topon 19185  df-topsp 19186  df-cld 19302  df-ntr 19303  df-cls 19304  df-nei 19381  df-lp 19419  df-perf 19420  df-cn 19510  df-cnp 19511  df-haus 19598  df-tx 19814  df-hmeo 20007  df-fil 20098  df-fm 20190  df-flim 20191  df-flf 20192  df-xms 20574  df-ms 20575  df-tms 20576  df-cncf 21133  df-limc 22021  df-dv 22022
This theorem is referenced by:  eff1o  22685
  Copyright terms: Public domain W3C validator