MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eff1olem Structured version   Unicode version

Theorem eff1olem 23483
Description: The exponential function maps the set  S, of complex numbers with imaginary part in a real interval of length  2  x.  pi, one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) (Proof shortened by Mario Carneiro, 13-May-2014.)
Hypotheses
Ref Expression
eff1olem.1  |-  F  =  ( w  e.  D  |->  ( exp `  (
_i  x.  w )
) )
eff1olem.2  |-  S  =  ( `' Im " D )
eff1olem.3  |-  ( ph  ->  D  C_  RR )
eff1olem.4  |-  ( (
ph  /\  ( x  e.  D  /\  y  e.  D ) )  -> 
( abs `  (
x  -  y ) )  <  ( 2  x.  pi ) )
eff1olem.5  |-  ( (
ph  /\  z  e.  RR )  ->  E. y  e.  D  ( (
z  -  y )  /  ( 2  x.  pi ) )  e.  ZZ )
Assertion
Ref Expression
eff1olem  |-  ( ph  ->  ( exp  |`  S ) : S -1-1-onto-> ( CC  \  {
0 } ) )
Distinct variable groups:    x, w, y, z, D    x, F, y, z    ph, w, x, y, z    x, S, y
Allowed substitution hints:    S( z, w)    F( w)

Proof of Theorem eff1olem
StepHypRef Expression
1 cnvimass 5203 . . . 4  |-  ( `' Im " D ) 
C_  dom  Im
2 eff1olem.2 . . . 4  |-  S  =  ( `' Im " D )
3 imf 13164 . . . . . 6  |-  Im : CC
--> RR
43fdmi 5747 . . . . 5  |-  dom  Im  =  CC
54eqcomi 2435 . . . 4  |-  CC  =  dom  Im
61, 2, 53sstr4i 3503 . . 3  |-  S  C_  CC
7 eff2 14140 . . . . . . 7  |-  exp : CC
--> ( CC  \  {
0 } )
87a1i 11 . . . . . 6  |-  ( S 
C_  CC  ->  exp : CC
--> ( CC  \  {
0 } ) )
98feqmptd 5930 . . . . 5  |-  ( S 
C_  CC  ->  exp  =  ( y  e.  CC  |->  ( exp `  y ) ) )
109reseq1d 5119 . . . 4  |-  ( S 
C_  CC  ->  ( exp  |`  S )  =  ( ( y  e.  CC  |->  ( exp `  y ) )  |`  S )
)
11 resmpt 5169 . . . 4  |-  ( S 
C_  CC  ->  ( ( y  e.  CC  |->  ( exp `  y ) )  |`  S )  =  ( y  e.  S  |->  ( exp `  y
) ) )
1210, 11eqtrd 2463 . . 3  |-  ( S 
C_  CC  ->  ( exp  |`  S )  =  ( y  e.  S  |->  ( exp `  y ) ) )
136, 12ax-mp 5 . 2  |-  ( exp  |`  S )  =  ( y  e.  S  |->  ( exp `  y ) )
146sseli 3460 . . . 4  |-  ( y  e.  S  ->  y  e.  CC )
157ffvelrni 6032 . . . 4  |-  ( y  e.  CC  ->  ( exp `  y )  e.  ( CC  \  {
0 } ) )
1614, 15syl 17 . . 3  |-  ( y  e.  S  ->  ( exp `  y )  e.  ( CC  \  {
0 } ) )
1716adantl 467 . 2  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  y )  e.  ( CC  \  {
0 } ) )
18 simpr 462 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  x  e.  ( CC  \  { 0 } ) )
19 eldifsn 4122 . . . . . . . . . 10  |-  ( x  e.  ( CC  \  { 0 } )  <-> 
( x  e.  CC  /\  x  =/=  0 ) )
2018, 19sylib 199 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x  e.  CC  /\  x  =/=  0 ) )
2120simpld 460 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  x  e.  CC )
2220simprd 464 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  x  =/=  0 )
2321, 22absrpcld 13497 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  x
)  e.  RR+ )
24 reeff1o 23388 . . . . . . . . 9  |-  ( exp  |`  RR ) : RR -1-1-onto-> RR+
25 f1ocnv 5839 . . . . . . . . 9  |-  ( ( exp  |`  RR ) : RR -1-1-onto-> RR+  ->  `' ( exp  |`  RR ) :
RR+
-1-1-onto-> RR )
26 f1of 5827 . . . . . . . . 9  |-  ( `' ( exp  |`  RR ) : RR+
-1-1-onto-> RR  ->  `' ( exp  |`  RR ) : RR+ --> RR )
2724, 25, 26mp2b 10 . . . . . . . 8  |-  `' ( exp  |`  RR ) : RR+ --> RR
2827ffvelrni 6032 . . . . . . 7  |-  ( ( abs `  x )  e.  RR+  ->  ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  e.  RR )
2923, 28syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( `' ( exp  |`  RR ) `  ( abs `  x ) )  e.  RR )
3029recnd 9669 . . . . 5  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( `' ( exp  |`  RR ) `  ( abs `  x ) )  e.  CC )
31 ax-icn 9598 . . . . . 6  |-  _i  e.  CC
32 eff1olem.3 . . . . . . . . 9  |-  ( ph  ->  D  C_  RR )
3332adantr 466 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  D  C_  RR )
34 eff1olem.1 . . . . . . . . . . . 12  |-  F  =  ( w  e.  D  |->  ( exp `  (
_i  x.  w )
) )
35 eqid 2422 . . . . . . . . . . . 12  |-  ( `' abs " { 1 } )  =  ( `' abs " { 1 } )
36 eff1olem.4 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  D  /\  y  e.  D ) )  -> 
( abs `  (
x  -  y ) )  <  ( 2  x.  pi ) )
37 eff1olem.5 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  RR )  ->  E. y  e.  D  ( (
z  -  y )  /  ( 2  x.  pi ) )  e.  ZZ )
38 eqid 2422 . . . . . . . . . . . 12  |-  ( sin  |`  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )  =  ( sin  |`  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) )
3934, 35, 32, 36, 37, 38efif1olem4 23480 . . . . . . . . . . 11  |-  ( ph  ->  F : D -1-1-onto-> ( `' abs " { 1 } ) )
40 f1ocnv 5839 . . . . . . . . . . 11  |-  ( F : D -1-1-onto-> ( `' abs " {
1 } )  ->  `' F : ( `' abs " { 1 } ) -1-1-onto-> D )
41 f1of 5827 . . . . . . . . . . 11  |-  ( `' F : ( `' abs " { 1 } ) -1-1-onto-> D  ->  `' F : ( `' abs " { 1 } ) --> D )
4239, 40, 413syl 18 . . . . . . . . . 10  |-  ( ph  ->  `' F : ( `' abs " { 1 } ) --> D )
4342adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  `' F : ( `' abs " { 1 } ) --> D )
4421abscld 13485 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  x
)  e.  RR )
4544recnd 9669 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  x
)  e.  CC )
4621, 22absne0d 13496 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  x
)  =/=  0 )
4721, 45, 46divcld 10383 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x  /  ( abs `  x ) )  e.  CC )
4821, 45, 46absdivd 13504 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  (
x  /  ( abs `  x ) ) )  =  ( ( abs `  x )  /  ( abs `  ( abs `  x
) ) ) )
49 absidm 13374 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  ( abs `  ( abs `  x
) )  =  ( abs `  x ) )
5021, 49syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  ( abs `  x ) )  =  ( abs `  x
) )
5150oveq2d 6317 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( abs `  x
)  /  ( abs `  ( abs `  x
) ) )  =  ( ( abs `  x
)  /  ( abs `  x ) ) )
5245, 46dividd 10381 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( abs `  x
)  /  ( abs `  x ) )  =  1 )
5348, 51, 523eqtrd 2467 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  (
x  /  ( abs `  x ) ) )  =  1 )
54 absf 13388 . . . . . . . . . . 11  |-  abs : CC
--> RR
55 ffn 5742 . . . . . . . . . . 11  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
56 fniniseg 6014 . . . . . . . . . . 11  |-  ( abs 
Fn  CC  ->  ( ( x  /  ( abs `  x ) )  e.  ( `' abs " {
1 } )  <->  ( (
x  /  ( abs `  x ) )  e.  CC  /\  ( abs `  ( x  /  ( abs `  x ) ) )  =  1 ) ) )
5754, 55, 56mp2b 10 . . . . . . . . . 10  |-  ( ( x  /  ( abs `  x ) )  e.  ( `' abs " {
1 } )  <->  ( (
x  /  ( abs `  x ) )  e.  CC  /\  ( abs `  ( x  /  ( abs `  x ) ) )  =  1 ) )
5847, 53, 57sylanbrc 668 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x  /  ( abs `  x ) )  e.  ( `' abs " { 1 } ) )
5943, 58ffvelrnd 6034 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( `' F `  ( x  /  ( abs `  x ) ) )  e.  D )
6033, 59sseldd 3465 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( `' F `  ( x  /  ( abs `  x ) ) )  e.  RR )
6160recnd 9669 . . . . . 6  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( `' F `  ( x  /  ( abs `  x ) ) )  e.  CC )
62 mulcl 9623 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( `' F `  ( x  /  ( abs `  x
) ) )  e.  CC )  ->  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) )  e.  CC )
6331, 61, 62sylancr 667 . . . . 5  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) )  e.  CC )
6430, 63addcld 9662 . . . 4  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( `' ( exp  |`  RR ) `  ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  CC )
6529, 60crimd 13283 . . . . 5  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( Im `  (
( `' ( exp  |`  RR ) `  ( abs `  x ) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  =  ( `' F `  ( x  /  ( abs `  x
) ) ) )
6665, 59eqeltrd 2510 . . . 4  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( Im `  (
( `' ( exp  |`  RR ) `  ( abs `  x ) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  e.  D
)
67 ffn 5742 . . . . 5  |-  ( Im : CC --> RR  ->  Im  Fn  CC )
68 elpreima 6013 . . . . 5  |-  ( Im  Fn  CC  ->  (
( ( `' ( exp  |`  RR ) `  ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  ( `' Im " D )  <-> 
( ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  CC  /\  ( Im `  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  e.  D
) ) )
693, 67, 68mp2b 10 . . . 4  |-  ( ( ( `' ( exp  |`  RR ) `  ( abs `  x ) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  ( `' Im " D )  <-> 
( ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  CC  /\  ( Im `  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  e.  D
) )
7064, 66, 69sylanbrc 668 . . 3  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( `' ( exp  |`  RR ) `  ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  ( `' Im " D ) )
7170, 2syl6eleqr 2521 . 2  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( `' ( exp  |`  RR ) `  ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  S )
72 efadd 14135 . . . . . . 7  |-  ( ( ( `' ( exp  |`  RR ) `  ( abs `  x ) )  e.  CC  /\  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) )  e.  CC )  -> 
( exp `  (
( `' ( exp  |`  RR ) `  ( abs `  x ) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  =  ( ( exp `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) )  x.  ( exp `  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
7330, 63, 72syl2anc 665 . . . . . 6  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( exp `  (
( `' ( exp  |`  RR ) `  ( abs `  x ) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  =  ( ( exp `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) )  x.  ( exp `  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
74 fvres 5891 . . . . . . . . 9  |-  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  e.  RR  ->  ( ( exp  |`  RR ) `
 ( `' ( exp  |`  RR ) `  ( abs `  x
) ) )  =  ( exp `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) ) )
7529, 74syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( exp  |`  RR ) `
 ( `' ( exp  |`  RR ) `  ( abs `  x
) ) )  =  ( exp `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) ) )
76 f1ocnvfv2 6187 . . . . . . . . 9  |-  ( ( ( exp  |`  RR ) : RR -1-1-onto-> RR+  /\  ( abs `  x )  e.  RR+ )  ->  ( ( exp  |`  RR ) `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) )  =  ( abs `  x
) )
7724, 23, 76sylancr 667 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( exp  |`  RR ) `
 ( `' ( exp  |`  RR ) `  ( abs `  x
) ) )  =  ( abs `  x
) )
7875, 77eqtr3d 2465 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( exp `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) )  =  ( abs `  x
) )
79 oveq2 6309 . . . . . . . . . . 11  |-  ( z  =  ( `' F `  ( x  /  ( abs `  x ) ) )  ->  ( _i  x.  z )  =  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )
8079fveq2d 5881 . . . . . . . . . 10  |-  ( z  =  ( `' F `  ( x  /  ( abs `  x ) ) )  ->  ( exp `  ( _i  x.  z
) )  =  ( exp `  ( _i  x.  ( `' F `  ( x  /  ( abs `  x ) ) ) ) ) )
81 oveq2 6309 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  (
_i  x.  w )  =  ( _i  x.  z ) )
8281fveq2d 5881 . . . . . . . . . . . 12  |-  ( w  =  z  ->  ( exp `  ( _i  x.  w ) )  =  ( exp `  (
_i  x.  z )
) )
8382cbvmptv 4513 . . . . . . . . . . 11  |-  ( w  e.  D  |->  ( exp `  ( _i  x.  w
) ) )  =  ( z  e.  D  |->  ( exp `  (
_i  x.  z )
) )
8434, 83eqtri 2451 . . . . . . . . . 10  |-  F  =  ( z  e.  D  |->  ( exp `  (
_i  x.  z )
) )
85 fvex 5887 . . . . . . . . . 10  |-  ( exp `  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  _V
8680, 84, 85fvmpt 5960 . . . . . . . . 9  |-  ( ( `' F `  ( x  /  ( abs `  x
) ) )  e.  D  ->  ( F `  ( `' F `  ( x  /  ( abs `  x ) ) ) )  =  ( exp `  ( _i  x.  ( `' F `  ( x  /  ( abs `  x ) ) ) ) ) )
8759, 86syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( F `  ( `' F `  ( x  /  ( abs `  x
) ) ) )  =  ( exp `  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )
8839adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  F : D -1-1-onto-> ( `' abs " {
1 } ) )
89 f1ocnvfv2 6187 . . . . . . . . 9  |-  ( ( F : D -1-1-onto-> ( `' abs " { 1 } )  /\  (
x  /  ( abs `  x ) )  e.  ( `' abs " {
1 } ) )  ->  ( F `  ( `' F `  ( x  /  ( abs `  x
) ) ) )  =  ( x  / 
( abs `  x
) ) )
9088, 58, 89syl2anc 665 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( F `  ( `' F `  ( x  /  ( abs `  x
) ) ) )  =  ( x  / 
( abs `  x
) ) )
9187, 90eqtr3d 2465 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( exp `  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  =  ( x  /  ( abs `  x
) ) )
9278, 91oveq12d 6319 . . . . . 6  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( exp `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) )  x.  ( exp `  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  =  ( ( abs `  x
)  x.  ( x  /  ( abs `  x
) ) ) )
9321, 45, 46divcan2d 10385 . . . . . 6  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( abs `  x
)  x.  ( x  /  ( abs `  x
) ) )  =  x )
9473, 92, 933eqtrrd 2468 . . . . 5  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  x  =  ( exp `  ( ( `' ( exp  |`  RR ) `  ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
9594adantrl 720 . . . 4  |-  ( (
ph  /\  ( y  e.  S  /\  x  e.  ( CC  \  {
0 } ) ) )  ->  x  =  ( exp `  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
96 fveq2 5877 . . . . 5  |-  ( y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  ->  ( exp `  y )  =  ( exp `  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
9796eqeq2d 2436 . . . 4  |-  ( y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  ->  ( x  =  ( exp `  y
)  <->  x  =  ( exp `  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) ) )
9895, 97syl5ibrcom 225 . . 3  |-  ( (
ph  /\  ( y  e.  S  /\  x  e.  ( CC  \  {
0 } ) ) )  ->  ( y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  ->  x  =  ( exp `  y ) ) )
9914adantl 467 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  y  e.  CC )
10099replimd 13248 . . . . . 6  |-  ( (
ph  /\  y  e.  S )  ->  y  =  ( ( Re
`  y )  +  ( _i  x.  (
Im `  y )
) ) )
101 absef 14238 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  ( abs `  ( exp `  y
) )  =  ( exp `  ( Re
`  y ) ) )
10299, 101syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  S )  ->  ( abs `  ( exp `  y
) )  =  ( exp `  ( Re
`  y ) ) )
10399recld 13245 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  S )  ->  (
Re `  y )  e.  RR )
104 fvres 5891 . . . . . . . . . . 11  |-  ( ( Re `  y )  e.  RR  ->  (
( exp  |`  RR ) `
 ( Re `  y ) )  =  ( exp `  (
Re `  y )
) )
105103, 104syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  S )  ->  (
( exp  |`  RR ) `
 ( Re `  y ) )  =  ( exp `  (
Re `  y )
) )
106102, 105eqtr4d 2466 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  S )  ->  ( abs `  ( exp `  y
) )  =  ( ( exp  |`  RR ) `
 ( Re `  y ) ) )
107106fveq2d 5881 . . . . . . . 8  |-  ( (
ph  /\  y  e.  S )  ->  ( `' ( exp  |`  RR ) `
 ( abs `  ( exp `  y ) ) )  =  ( `' ( exp  |`  RR ) `
 ( ( exp  |`  RR ) `  (
Re `  y )
) ) )
108 f1ocnvfv1 6186 . . . . . . . . 9  |-  ( ( ( exp  |`  RR ) : RR -1-1-onto-> RR+  /\  ( Re
`  y )  e.  RR )  ->  ( `' ( exp  |`  RR ) `
 ( ( exp  |`  RR ) `  (
Re `  y )
) )  =  ( Re `  y ) )
10924, 103, 108sylancr 667 . . . . . . . 8  |-  ( (
ph  /\  y  e.  S )  ->  ( `' ( exp  |`  RR ) `
 ( ( exp  |`  RR ) `  (
Re `  y )
) )  =  ( Re `  y ) )
110107, 109eqtrd 2463 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  ( `' ( exp  |`  RR ) `
 ( abs `  ( exp `  y ) ) )  =  ( Re
`  y ) )
11199imcld 13246 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  S )  ->  (
Im `  y )  e.  RR )
112111recnd 9669 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  S )  ->  (
Im `  y )  e.  CC )
113 mulcl 9623 . . . . . . . . . . . . . 14  |-  ( ( _i  e.  CC  /\  ( Im `  y )  e.  CC )  -> 
( _i  x.  (
Im `  y )
)  e.  CC )
11431, 112, 113sylancr 667 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  (
_i  x.  ( Im `  y ) )  e.  CC )
115 efcl 14124 . . . . . . . . . . . . 13  |-  ( ( _i  x.  ( Im
`  y ) )  e.  CC  ->  ( exp `  ( _i  x.  ( Im `  y ) ) )  e.  CC )
116114, 115syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  ( _i  x.  ( Im `  y ) ) )  e.  CC )
117103recnd 9669 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  (
Re `  y )  e.  CC )
118 efcl 14124 . . . . . . . . . . . . 13  |-  ( ( Re `  y )  e.  CC  ->  ( exp `  ( Re `  y ) )  e.  CC )
119117, 118syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  ( Re `  y ) )  e.  CC )
120 efne0 14138 . . . . . . . . . . . . 13  |-  ( ( Re `  y )  e.  CC  ->  ( exp `  ( Re `  y ) )  =/=  0 )
121117, 120syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  ( Re `  y ) )  =/=  0 )
122116, 119, 121divcan3d 10388 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  S )  ->  (
( ( exp `  (
Re `  y )
)  x.  ( exp `  ( _i  x.  (
Im `  y )
) ) )  / 
( exp `  (
Re `  y )
) )  =  ( exp `  ( _i  x.  ( Im `  y ) ) ) )
123100fveq2d 5881 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  y )  =  ( exp `  (
( Re `  y
)  +  ( _i  x.  ( Im `  y ) ) ) ) )
124 efadd 14135 . . . . . . . . . . . . . 14  |-  ( ( ( Re `  y
)  e.  CC  /\  ( _i  x.  (
Im `  y )
)  e.  CC )  ->  ( exp `  (
( Re `  y
)  +  ( _i  x.  ( Im `  y ) ) ) )  =  ( ( exp `  ( Re
`  y ) )  x.  ( exp `  (
_i  x.  ( Im `  y ) ) ) ) )
125117, 114, 124syl2anc 665 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  ( ( Re
`  y )  +  ( _i  x.  (
Im `  y )
) ) )  =  ( ( exp `  (
Re `  y )
)  x.  ( exp `  ( _i  x.  (
Im `  y )
) ) ) )
126123, 125eqtrd 2463 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  y )  =  ( ( exp `  (
Re `  y )
)  x.  ( exp `  ( _i  x.  (
Im `  y )
) ) ) )
127126, 102oveq12d 6319 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  S )  ->  (
( exp `  y
)  /  ( abs `  ( exp `  y
) ) )  =  ( ( ( exp `  ( Re `  y
) )  x.  ( exp `  ( _i  x.  ( Im `  y ) ) ) )  / 
( exp `  (
Re `  y )
) ) )
128 elpreima 6013 . . . . . . . . . . . . . . . 16  |-  ( Im  Fn  CC  ->  (
y  e.  ( `' Im " D )  <-> 
( y  e.  CC  /\  ( Im `  y
)  e.  D ) ) )
1293, 67, 128mp2b 10 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( `' Im " D )  <->  ( y  e.  CC  /\  ( Im
`  y )  e.  D ) )
130129simprbi 465 . . . . . . . . . . . . . 14  |-  ( y  e.  ( `' Im " D )  ->  (
Im `  y )  e.  D )
131130, 2eleq2s 2530 . . . . . . . . . . . . 13  |-  ( y  e.  S  ->  (
Im `  y )  e.  D )
132131adantl 467 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  (
Im `  y )  e.  D )
133 oveq2 6309 . . . . . . . . . . . . . 14  |-  ( w  =  ( Im `  y )  ->  (
_i  x.  w )  =  ( _i  x.  ( Im `  y ) ) )
134133fveq2d 5881 . . . . . . . . . . . . 13  |-  ( w  =  ( Im `  y )  ->  ( exp `  ( _i  x.  w ) )  =  ( exp `  (
_i  x.  ( Im `  y ) ) ) )
135 fvex 5887 . . . . . . . . . . . . 13  |-  ( exp `  ( _i  x.  (
Im `  y )
) )  e.  _V
136134, 34, 135fvmpt 5960 . . . . . . . . . . . 12  |-  ( ( Im `  y )  e.  D  ->  ( F `  ( Im `  y ) )  =  ( exp `  (
_i  x.  ( Im `  y ) ) ) )
137132, 136syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  S )  ->  ( F `  ( Im `  y ) )  =  ( exp `  (
_i  x.  ( Im `  y ) ) ) )
138122, 127, 1373eqtr4d 2473 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  S )  ->  (
( exp `  y
)  /  ( abs `  ( exp `  y
) ) )  =  ( F `  (
Im `  y )
) )
139138fveq2d 5881 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  S )  ->  ( `' F `  ( ( exp `  y )  /  ( abs `  ( exp `  y ) ) ) )  =  ( `' F `  ( F `
 ( Im `  y ) ) ) )
140 f1ocnvfv1 6186 . . . . . . . . . 10  |-  ( ( F : D -1-1-onto-> ( `' abs " { 1 } )  /\  (
Im `  y )  e.  D )  ->  ( `' F `  ( F `
 ( Im `  y ) ) )  =  ( Im `  y ) )
14139, 131, 140syl2an 479 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  S )  ->  ( `' F `  ( F `
 ( Im `  y ) ) )  =  ( Im `  y ) )
142139, 141eqtrd 2463 . . . . . . . 8  |-  ( (
ph  /\  y  e.  S )  ->  ( `' F `  ( ( exp `  y )  /  ( abs `  ( exp `  y ) ) ) )  =  ( Im `  y ) )
143142oveq2d 6317 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  (
_i  x.  ( `' F `  ( ( exp `  y )  / 
( abs `  ( exp `  y ) ) ) ) )  =  ( _i  x.  (
Im `  y )
) )
144110, 143oveq12d 6319 . . . . . 6  |-  ( (
ph  /\  y  e.  S )  ->  (
( `' ( exp  |`  RR ) `  ( abs `  ( exp `  y
) ) )  +  ( _i  x.  ( `' F `  ( ( exp `  y )  /  ( abs `  ( exp `  y ) ) ) ) ) )  =  ( ( Re
`  y )  +  ( _i  x.  (
Im `  y )
) ) )
145100, 144eqtr4d 2466 . . . . 5  |-  ( (
ph  /\  y  e.  S )  ->  y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  ( exp `  y ) ) )  +  ( _i  x.  ( `' F `  ( ( exp `  y
)  /  ( abs `  ( exp `  y
) ) ) ) ) ) )
146 fveq2 5877 . . . . . . . 8  |-  ( x  =  ( exp `  y
)  ->  ( abs `  x )  =  ( abs `  ( exp `  y ) ) )
147146fveq2d 5881 . . . . . . 7  |-  ( x  =  ( exp `  y
)  ->  ( `' ( exp  |`  RR ) `  ( abs `  x
) )  =  ( `' ( exp  |`  RR ) `
 ( abs `  ( exp `  y ) ) ) )
148 id 23 . . . . . . . . . 10  |-  ( x  =  ( exp `  y
)  ->  x  =  ( exp `  y ) )
149148, 146oveq12d 6319 . . . . . . . . 9  |-  ( x  =  ( exp `  y
)  ->  ( x  /  ( abs `  x
) )  =  ( ( exp `  y
)  /  ( abs `  ( exp `  y
) ) ) )
150149fveq2d 5881 . . . . . . . 8  |-  ( x  =  ( exp `  y
)  ->  ( `' F `  ( x  /  ( abs `  x
) ) )  =  ( `' F `  ( ( exp `  y
)  /  ( abs `  ( exp `  y
) ) ) ) )
151150oveq2d 6317 . . . . . . 7  |-  ( x  =  ( exp `  y
)  ->  ( _i  x.  ( `' F `  ( x  /  ( abs `  x ) ) ) )  =  ( _i  x.  ( `' F `  ( ( exp `  y )  /  ( abs `  ( exp `  y ) ) ) ) ) )
152147, 151oveq12d 6319 . . . . . 6  |-  ( x  =  ( exp `  y
)  ->  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  ( exp `  y ) ) )  +  ( _i  x.  ( `' F `  ( ( exp `  y
)  /  ( abs `  ( exp `  y
) ) ) ) ) ) )
153152eqeq2d 2436 . . . . 5  |-  ( x  =  ( exp `  y
)  ->  ( y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  <->  y  =  ( ( `' ( exp  |`  RR ) `  ( abs `  ( exp `  y
) ) )  +  ( _i  x.  ( `' F `  ( ( exp `  y )  /  ( abs `  ( exp `  y ) ) ) ) ) ) ) )
154145, 153syl5ibrcom 225 . . . 4  |-  ( (
ph  /\  y  e.  S )  ->  (
x  =  ( exp `  y )  ->  y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
155154adantrr 721 . . 3  |-  ( (
ph  /\  ( y  e.  S  /\  x  e.  ( CC  \  {
0 } ) ) )  ->  ( x  =  ( exp `  y
)  ->  y  =  ( ( `' ( exp  |`  RR ) `  ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
15698, 155impbid 193 . 2  |-  ( (
ph  /\  ( y  e.  S  /\  x  e.  ( CC  \  {
0 } ) ) )  ->  ( y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  <->  x  =  ( exp `  y ) ) )
15713, 17, 71, 156f1o2d 6531 1  |-  ( ph  ->  ( exp  |`  S ) : S -1-1-onto-> ( CC  \  {
0 } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1868    =/= wne 2618   E.wrex 2776    \ cdif 3433    C_ wss 3436   {csn 3996   class class class wbr 4420    |-> cmpt 4479   `'ccnv 4848   dom cdm 4849    |` cres 4851   "cima 4852    Fn wfn 5592   -->wf 5593   -1-1-onto->wf1o 5596   ` cfv 5597  (class class class)co 6301   CCcc 9537   RRcr 9538   0cc0 9539   1c1 9540   _ici 9541    + caddc 9542    x. cmul 9544    < clt 9675    - cmin 9860   -ucneg 9861    / cdiv 10269   2c2 10659   ZZcz 10937   RR+crp 11302   [,]cicc 11638   Recre 13148   Imcim 13149   abscabs 13285   expce 14101   sincsin 14103   picpi 14106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-inf2 8148  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-se 4809  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-isom 5606  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-of 6541  df-om 6703  df-1st 6803  df-2nd 6804  df-supp 6922  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-2o 7187  df-oadd 7190  df-er 7367  df-map 7478  df-pm 7479  df-ixp 7527  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-fsupp 7886  df-fi 7927  df-sup 7958  df-inf 7959  df-oi 8027  df-card 8374  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12027  df-mod 12096  df-seq 12213  df-exp 12272  df-fac 12459  df-bc 12487  df-hash 12515  df-shft 13118  df-cj 13150  df-re 13151  df-im 13152  df-sqrt 13286  df-abs 13287  df-limsup 13513  df-clim 13539  df-rlim 13540  df-sum 13740  df-ef 14108  df-sin 14110  df-cos 14111  df-pi 14113  df-struct 15110  df-ndx 15111  df-slot 15112  df-base 15113  df-sets 15114  df-ress 15115  df-plusg 15190  df-mulr 15191  df-starv 15192  df-sca 15193  df-vsca 15194  df-ip 15195  df-tset 15196  df-ple 15197  df-ds 15199  df-unif 15200  df-hom 15201  df-cco 15202  df-rest 15308  df-topn 15309  df-0g 15327  df-gsum 15328  df-topgen 15329  df-pt 15330  df-prds 15333  df-xrs 15387  df-qtop 15393  df-imas 15394  df-xps 15397  df-mre 15479  df-mrc 15480  df-acs 15482  df-mgm 16475  df-sgrp 16514  df-mnd 16524  df-submnd 16570  df-mulg 16663  df-cntz 16958  df-cmn 17419  df-psmet 18949  df-xmet 18950  df-met 18951  df-bl 18952  df-mopn 18953  df-fbas 18954  df-fg 18955  df-cnfld 18958  df-top 19907  df-bases 19908  df-topon 19909  df-topsp 19910  df-cld 20020  df-ntr 20021  df-cls 20022  df-nei 20100  df-lp 20138  df-perf 20139  df-cn 20229  df-cnp 20230  df-haus 20317  df-tx 20563  df-hmeo 20756  df-fil 20847  df-fm 20939  df-flim 20940  df-flf 20941  df-xms 21321  df-ms 21322  df-tms 21323  df-cncf 21896  df-limc 22807  df-dv 22808
This theorem is referenced by:  eff1o  23484
  Copyright terms: Public domain W3C validator