MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcllem Structured version   Unicode version

Theorem efcllem 13691
Description: Lemma for efcl 13696. The series that defines the exponential function converges, in the case where its argument is nonzero. The ratio test cvgrat 13671 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
eftval.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
efcllem  |-  ( A  e.  CC  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )
Distinct variable group:    A, n
Allowed substitution hint:    F( n)

Proof of Theorem efcllem
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11128 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 eqid 2467 . 2  |-  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) )  =  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) )
3 halfre 10766 . . 3  |-  ( 1  /  2 )  e.  RR
43a1i 11 . 2  |-  ( A  e.  CC  ->  (
1  /  2 )  e.  RR )
5 halflt1 10769 . . 3  |-  ( 1  /  2 )  <  1
65a1i 11 . 2  |-  ( A  e.  CC  ->  (
1  /  2 )  <  1 )
7 2re 10617 . . . 4  |-  2  e.  RR
8 abscl 13090 . . . 4  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
9 remulcl 9589 . . . 4  |-  ( ( 2  e.  RR  /\  ( abs `  A )  e.  RR )  -> 
( 2  x.  ( abs `  A ) )  e.  RR )
107, 8, 9sylancr 663 . . 3  |-  ( A  e.  CC  ->  (
2  x.  ( abs `  A ) )  e.  RR )
11 absge0 13099 . . . 4  |-  ( A  e.  CC  ->  0  <_  ( abs `  A
) )
12 0le2 10638 . . . . 5  |-  0  <_  2
13 mulge0 10082 . . . . 5  |-  ( ( ( 2  e.  RR  /\  0  <_  2 )  /\  ( ( abs `  A )  e.  RR  /\  0  <_  ( abs `  A ) ) )  ->  0  <_  (
2  x.  ( abs `  A ) ) )
147, 12, 13mpanl12 682 . . . 4  |-  ( ( ( abs `  A
)  e.  RR  /\  0  <_  ( abs `  A
) )  ->  0  <_  ( 2  x.  ( abs `  A ) ) )
158, 11, 14syl2anc 661 . . 3  |-  ( A  e.  CC  ->  0  <_  ( 2  x.  ( abs `  A ) ) )
16 flge0nn0 11934 . . 3  |-  ( ( ( 2  x.  ( abs `  A ) )  e.  RR  /\  0  <_  ( 2  x.  ( abs `  A ) ) )  ->  ( |_ `  ( 2  x.  ( abs `  A ) ) )  e.  NN0 )
1710, 15, 16syl2anc 661 . 2  |-  ( A  e.  CC  ->  ( |_ `  ( 2  x.  ( abs `  A
) ) )  e. 
NN0 )
18 eftval.1 . . . . 5  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
1918eftval 13690 . . . 4  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( ( A ^
k )  /  ( ! `  k )
) )
2019adantl 466 . . 3  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
21 eftcl 13687 . . 3  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
2220, 21eqeltrd 2555 . 2  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  e.  CC )
238adantr 465 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  A )  e.  RR )
24 eluznn0 11163 . . . . . . 7  |-  ( ( ( |_ `  (
2  x.  ( abs `  A ) ) )  e.  NN0  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A ) ) ) ) )  -> 
k  e.  NN0 )
2517, 24sylan 471 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  k  e.  NN0 )
26 nn0p1nn 10847 . . . . . 6  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
2725, 26syl 16 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( k  +  1 )  e.  NN )
2823, 27nndivred 10596 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A )  / 
( k  +  1 ) )  e.  RR )
293a1i 11 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( 1  /  2 )  e.  RR )
3023, 25reexpcld 12307 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A ) ^
k )  e.  RR )
31 faccl 12343 . . . . . 6  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
3225, 31syl 16 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  k )  e.  NN )
3330, 32nndivred 10596 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
( abs `  A
) ^ k )  /  ( ! `  k ) )  e.  RR )
34 expcl 12164 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
3525, 34syldan 470 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( A ^ k )  e.  CC )
3635absge0d 13254 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  0  <_  ( abs `  ( A ^ k ) ) )
37 absexp 13116 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )
3825, 37syldan 470 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) )
3936, 38breqtrd 4477 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  0  <_  ( ( abs `  A
) ^ k ) )
4032nnred 10563 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  k )  e.  RR )
4132nngt0d 10591 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  0  <  ( ! `  k ) )
42 divge0 10423 . . . . 5  |-  ( ( ( ( ( abs `  A ) ^ k
)  e.  RR  /\  0  <_  ( ( abs `  A ) ^ k
) )  /\  (
( ! `  k
)  e.  RR  /\  0  <  ( ! `  k ) ) )  ->  0  <_  (
( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
4330, 39, 40, 41, 42syl22anc 1229 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  0  <_  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
4410adantr 465 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( 2  x.  ( abs `  A
) )  e.  RR )
45 peano2nn0 10848 . . . . . . . . . . 11  |-  ( ( |_ `  ( 2  x.  ( abs `  A
) ) )  e. 
NN0  ->  ( ( |_
`  ( 2  x.  ( abs `  A
) ) )  +  1 )  e.  NN0 )
4617, 45syl 16 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( |_ `  (
2  x.  ( abs `  A ) ) )  +  1 )  e. 
NN0 )
4746nn0red 10865 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( |_ `  (
2  x.  ( abs `  A ) ) )  +  1 )  e.  RR )
4847adantr 465 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( |_ `  ( 2  x.  ( abs `  A
) ) )  +  1 )  e.  RR )
4927nnred 10563 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( k  +  1 )  e.  RR )
50 flltp1 11917 . . . . . . . . 9  |-  ( ( 2  x.  ( abs `  A ) )  e.  RR  ->  ( 2  x.  ( abs `  A
) )  <  (
( |_ `  (
2  x.  ( abs `  A ) ) )  +  1 ) )
5144, 50syl 16 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( 2  x.  ( abs `  A
) )  <  (
( |_ `  (
2  x.  ( abs `  A ) ) )  +  1 ) )
52 eluzp1p1 11119 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) )  ->  ( k  +  1 )  e.  (
ZZ>= `  ( ( |_
`  ( 2  x.  ( abs `  A
) ) )  +  1 ) ) )
5352adantl 466 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( k  +  1 )  e.  ( ZZ>= `  ( ( |_ `  ( 2  x.  ( abs `  A
) ) )  +  1 ) ) )
54 eluzle 11106 . . . . . . . . 9  |-  ( ( k  +  1 )  e.  ( ZZ>= `  (
( |_ `  (
2  x.  ( abs `  A ) ) )  +  1 ) )  ->  ( ( |_
`  ( 2  x.  ( abs `  A
) ) )  +  1 )  <_  (
k  +  1 ) )
5553, 54syl 16 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( |_ `  ( 2  x.  ( abs `  A
) ) )  +  1 )  <_  (
k  +  1 ) )
5644, 48, 49, 51, 55ltletrd 9753 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( 2  x.  ( abs `  A
) )  <  (
k  +  1 ) )
5723recnd 9634 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  A )  e.  CC )
58 2cn 10618 . . . . . . . 8  |-  2  e.  CC
59 mulcom 9590 . . . . . . . 8  |-  ( ( ( abs `  A
)  e.  CC  /\  2  e.  CC )  ->  ( ( abs `  A
)  x.  2 )  =  ( 2  x.  ( abs `  A
) ) )
6057, 58, 59sylancl 662 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A )  x.  2 )  =  ( 2  x.  ( abs `  A ) ) )
6127nncnd 10564 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( k  +  1 )  e.  CC )
6261mulid2d 9626 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( 1  x.  ( k  +  1 ) )  =  ( k  +  1 ) )
6356, 60, 623brtr4d 4483 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A )  x.  2 )  <  (
1  x.  ( k  +  1 ) ) )
64 2pos 10639 . . . . . . . . 9  |-  0  <  2
657, 64pm3.2i 455 . . . . . . . 8  |-  ( 2  e.  RR  /\  0  <  2 )
6665a1i 11 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( 2  e.  RR  /\  0  <  2 ) )
67 1red 9623 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  1  e.  RR )
6827nngt0d 10591 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  0  <  ( k  +  1 ) )
6949, 68jca 532 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
k  +  1 )  e.  RR  /\  0  <  ( k  +  1 ) ) )
70 lt2mul2div 10433 . . . . . . 7  |-  ( ( ( ( abs `  A
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  /\  ( 1  e.  RR  /\  (
( k  +  1 )  e.  RR  /\  0  <  ( k  +  1 ) ) ) )  ->  ( (
( abs `  A
)  x.  2 )  <  ( 1  x.  ( k  +  1 ) )  <->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) ) )
7123, 66, 67, 69, 70syl22anc 1229 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
( abs `  A
)  x.  2 )  <  ( 1  x.  ( k  +  1 ) )  <->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) ) )
7263, 71mpbid 210 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) )
73 ltle 9685 . . . . . 6  |-  ( ( ( ( abs `  A
)  /  ( k  +  1 ) )  e.  RR  /\  (
1  /  2 )  e.  RR )  -> 
( ( ( abs `  A )  /  (
k  +  1 ) )  <  ( 1  /  2 )  -> 
( ( abs `  A
)  /  ( k  +  1 ) )  <_  ( 1  / 
2 ) ) )
7428, 3, 73sylancl 662 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
( abs `  A
)  /  ( k  +  1 ) )  <  ( 1  / 
2 )  ->  (
( abs `  A
)  /  ( k  +  1 ) )  <_  ( 1  / 
2 ) ) )
7572, 74mpd 15 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A )  / 
( k  +  1 ) )  <_  (
1  /  2 ) )
7628, 29, 33, 43, 75lemul2ad 10498 . . 3  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( ( abs `  A
)  /  ( k  +  1 ) ) )  <_  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( 1  /  2
) ) )
77 peano2nn0 10848 . . . . . . 7  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
7825, 77syl 16 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( k  +  1 )  e. 
NN0 )
7918eftval 13690 . . . . . 6  |-  ( ( k  +  1 )  e.  NN0  ->  ( F `
 ( k  +  1 ) )  =  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )
8078, 79syl 16 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( F `  ( k  +  1 ) )  =  ( ( A ^ (
k  +  1 ) )  /  ( ! `
 ( k  +  1 ) ) ) )
8180fveq2d 5876 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  =  ( abs `  ( ( A ^ ( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) ) )
82 absexp 13116 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( k  +  1 )  e.  NN0 )  ->  ( abs `  ( A ^ ( k  +  1 ) ) )  =  ( ( abs `  A ) ^ (
k  +  1 ) ) )
8378, 82syldan 470 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) )
8457, 25expp1d 12291 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A ) ^
( k  +  1 ) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
8583, 84eqtrd 2508 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
86 faccl 12343 . . . . . . . . . 10  |-  ( ( k  +  1 )  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  e.  NN )
8778, 86syl 16 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  ( k  +  1 ) )  e.  NN )
8887nnred 10563 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  ( k  +  1 ) )  e.  RR )
8987nnnn0d 10864 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  ( k  +  1 ) )  e.  NN0 )
9089nn0ge0d 10867 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  0  <_  ( ! `  ( k  +  1 ) ) )
9188, 90absidd 13233 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( ! `  (
k  +  1 ) ) )  =  ( ! `  ( k  +  1 ) ) )
92 facp1 12338 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
9325, 92syl 16 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  ( k  +  1 ) )  =  ( ( ! `  k
)  x.  ( k  +  1 ) ) )
9491, 93eqtrd 2508 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( ! `  (
k  +  1 ) ) )  =  ( ( ! `  k
)  x.  ( k  +  1 ) ) )
9585, 94oveq12d 6313 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  ( A ^
( k  +  1 ) ) )  / 
( abs `  ( ! `  ( k  +  1 ) ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  x.  ( abs `  A ) )  / 
( ( ! `  k )  x.  (
k  +  1 ) ) ) )
96 expcl 12164 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( k  +  1 )  e.  NN0 )  ->  ( A ^ (
k  +  1 ) )  e.  CC )
9778, 96syldan 470 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( A ^ ( k  +  1 ) )  e.  CC )
9887nncnd 10564 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  ( k  +  1 ) )  e.  CC )
9987nnne0d 10592 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  ( k  +  1 ) )  =/=  0
)
10097, 98, 99absdivd 13265 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )  =  ( ( abs `  ( A ^ ( k  +  1 ) ) )  /  ( abs `  ( ! `  ( k  +  1 ) ) ) ) )
10130recnd 9634 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A ) ^
k )  e.  CC )
10232nncnd 10564 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  k )  e.  CC )
10332nnne0d 10592 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  k )  =/=  0
)
10427nnne0d 10592 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( k  +  1 )  =/=  0 )
105101, 102, 57, 61, 103, 104divmuldivd 10373 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( ( abs `  A
)  /  ( k  +  1 ) ) )  =  ( ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) )  /  (
( ! `  k
)  x.  ( k  +  1 ) ) ) )
10695, 100, 1053eqtr4d 2518 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( ( abs `  A )  /  (
k  +  1 ) ) ) )
10781, 106eqtrd 2508 . . 3  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( ( abs `  A )  /  (
k  +  1 ) ) ) )
108 halfcn 10767 . . . . 5  |-  ( 1  /  2 )  e.  CC
10925, 22syldan 470 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( F `  k )  e.  CC )
110109abscld 13246 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  k
) )  e.  RR )
111110recnd 9634 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  k
) )  e.  CC )
112 mulcom 9590 . . . . 5  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( abs `  ( F `
 k ) )  e.  CC )  -> 
( ( 1  / 
2 )  x.  ( abs `  ( F `  k ) ) )  =  ( ( abs `  ( F `  k
) )  x.  (
1  /  2 ) ) )
113108, 111, 112sylancr 663 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
1  /  2 )  x.  ( abs `  ( F `  k )
) )  =  ( ( abs `  ( F `  k )
)  x.  ( 1  /  2 ) ) )
11425, 19syl 16 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
115114fveq2d 5876 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  k
) )  =  ( abs `  ( ( A ^ k )  /  ( ! `  k ) ) ) )
116 eftabs 13689 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  (
( A ^ k
)  /  ( ! `
 k ) ) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
11725, 116syldan 470 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( ( A ^
k )  /  ( ! `  k )
) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
118115, 117eqtrd 2508 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  k
) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
119118oveq1d 6310 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  ( F `  k ) )  x.  ( 1  /  2
) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( 1  / 
2 ) ) )
120113, 119eqtrd 2508 . . 3  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
1  /  2 )  x.  ( abs `  ( F `  k )
) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( 1  / 
2 ) ) )
12176, 107, 1203brtr4d 4483 . 2  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( 1  /  2
)  x.  ( abs `  ( F `  k
) ) ) )
1221, 2, 4, 6, 17, 22, 121cvgrat 13671 1  |-  ( A  e.  CC  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   class class class wbr 4453    |-> cmpt 4511   dom cdm 5005   ` cfv 5594  (class class class)co 6295   CCcc 9502   RRcr 9503   0cc0 9504   1c1 9505    + caddc 9507    x. cmul 9509    < clt 9640    <_ cle 9641    / cdiv 10218   NNcn 10548   2c2 10597   NN0cn0 10807   ZZ>=cuz 11094   |_cfl 11907    seqcseq 12087   ^cexp 12146   !cfa 12333   abscabs 13046    ~~> cli 13286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-addf 9583  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-pm 7435  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-oi 7947  df-card 8332  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-ico 11547  df-fz 11685  df-fzo 11805  df-fl 11909  df-seq 12088  df-exp 12147  df-fac 12334  df-hash 12386  df-shft 12879  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-limsup 13273  df-clim 13290  df-rlim 13291  df-sum 13488
This theorem is referenced by:  eff  13695  efcvg  13698  reefcl  13700  efaddlem  13706  eftlcvg  13718  effsumlt  13723  eflegeo  13733  eirrlem  13814
  Copyright terms: Public domain W3C validator