MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcl Structured version   Unicode version

Theorem efcl 13820
Description: Closure law for the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
efcl  |-  ( A  e.  CC  ->  ( exp `  A )  e.  CC )

Proof of Theorem efcl
StepHypRef Expression
1 eff 13819 . 2  |-  exp : CC
--> CC
21ffvelrni 5932 1  |-  ( A  e.  CC  ->  ( exp `  A )  e.  CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1826   ` cfv 5496   CCcc 9401   expce 13799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481  ax-addf 9482  ax-mulf 9483
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-recs 6960  df-rdg 6994  df-1o 7048  df-oadd 7052  df-er 7229  df-pm 7341  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-sup 7816  df-oi 7850  df-card 8233  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-n0 10713  df-z 10782  df-uz 11002  df-rp 11140  df-ico 11456  df-fz 11594  df-fzo 11718  df-fl 11828  df-seq 12011  df-exp 12070  df-fac 12256  df-hash 12308  df-shft 12902  df-cj 12934  df-re 12935  df-im 12936  df-sqrt 13070  df-abs 13071  df-limsup 13296  df-clim 13313  df-rlim 13314  df-sum 13511  df-ef 13805
This theorem is referenced by:  fprodefsum  13832  efne0  13834  efneg  13835  eff2  13836  efsub  13837  efexp  13838  ef4p  13850  sinf  13861  cosf  13862  tanval2  13870  tanval3  13871  resinval  13872  recosval  13873  resincl  13877  recoscl  13878  sinneg  13883  cosneg  13884  efival  13889  sinhval  13891  coshval  13892  absef  13934  efieq1re  13936  dveflem  22465  dvef  22466  dvsincos  22467  reeff1o  22927  efper  22957  pige3  22995  sineq0  22999  efeq1  23001  efif1olem4  23017  efifo  23019  eff1olem  23020  eflogeq  23074  dvloglem  23116  logf1o2  23118  efopn  23126  cxpcl  23142  dvcxp1  23203  dvcxp2  23204  sinasin  23336  asinsin  23339  efiatan2  23364  atantan  23370  efrlim  23416  efghgrpOLD  25492  iprodefisumlem  29289  iprodefisum  29290  dvcncxp1  30266  expgrowthi  31406  expgrowth  31408  sinhpcosh  33470  sineq0ALT  34084
  Copyright terms: Public domain W3C validator