Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eel0T1 Structured version   Unicode version

Theorem eel0T1 37000
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
eel0T1.1  |-  ph
eel0T1.2  |-  ( T. 
->  ps )
eel0T1.3  |-  ( ch 
->  th )
eel0T1.4  |-  ( (
ph  /\  ps  /\  th )  ->  ta )
Assertion
Ref Expression
eel0T1  |-  ( ch 
->  ta )

Proof of Theorem eel0T1
StepHypRef Expression
1 3anass 987 . . 3  |-  ( (
ph  /\ T.  /\  ch )  <->  ( ph  /\  ( T.  /\  ch )
) )
2 simpr 463 . . . 4  |-  ( (
ph  /\  ( T.  /\  ch ) )  -> 
( T.  /\  ch ) )
3 eel0T1.1 . . . . 5  |-  ph
43jctl 544 . . . 4  |-  ( ( T.  /\  ch )  ->  ( ph  /\  ( T.  /\  ch ) ) )
52, 4impbii 191 . . 3  |-  ( (
ph  /\  ( T.  /\  ch ) )  <->  ( T.  /\  ch ) )
6 truan 1455 . . 3  |-  ( ( T.  /\  ch )  <->  ch )
71, 5, 63bitri 275 . 2  |-  ( (
ph  /\ T.  /\  ch )  <->  ch )
8 eel0T1.3 . . 3  |-  ( ch 
->  th )
9 eel0T1.2 . . . 4  |-  ( T. 
->  ps )
10 eel0T1.4 . . . 4  |-  ( (
ph  /\  ps  /\  th )  ->  ta )
119, 10syl3an2 1299 . . 3  |-  ( (
ph  /\ T.  /\  th )  ->  ta )
128, 11syl3an3 1300 . 2  |-  ( (
ph  /\ T.  /\  ch )  ->  ta )
137, 12sylbir 217 1  |-  ( ch 
->  ta )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 983   T. wtru 1439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 189  df-an 373  df-3an 985  df-tru 1441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator