MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eean Structured version   Unicode version

Theorem eean 1992
Description: Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypotheses
Ref Expression
eean.1  |-  F/ y
ph
eean.2  |-  F/ x ps
Assertion
Ref Expression
eean  |-  ( E. x E. y (
ph  /\  ps )  <->  ( E. x ph  /\  E. y ps ) )

Proof of Theorem eean
StepHypRef Expression
1 eean.1 . . . 4  |-  F/ y
ph
2119.42 1977 . . 3  |-  ( E. y ( ph  /\  ps )  <->  ( ph  /\  E. y ps ) )
32exbii 1672 . 2  |-  ( E. x E. y (
ph  /\  ps )  <->  E. x ( ph  /\  E. y ps ) )
4 eean.2 . . . 4  |-  F/ x ps
54nfex 1953 . . 3  |-  F/ x E. y ps
6519.41 1976 . 2  |-  ( E. x ( ph  /\  E. y ps )  <->  ( E. x ph  /\  E. y ps ) )
73, 6bitri 249 1  |-  ( E. x E. y (
ph  /\  ps )  <->  ( E. x ph  /\  E. y ps ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367   E.wex 1617   F/wnf 1621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859
This theorem depends on definitions:  df-bi 185  df-an 369  df-ex 1618  df-nf 1622
This theorem is referenced by:  eeanv  1993  reean  3021
  Copyright terms: Public domain W3C validator