Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee11an Structured version   Visualization version   Unicode version

Theorem ee11an 37111
Description: e11an 37110 without virtual deductions. syl22anc 1277 is also e11an 37110 without virtual deductions, exept with a different order of hypotheses. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee11an.1  |-  ( ph  ->  ps )
ee11an.2  |-  ( ph  ->  ch )
ee11an.3  |-  ( ( ps  /\  ch )  ->  th )
Assertion
Ref Expression
ee11an  |-  ( ph  ->  th )

Proof of Theorem ee11an
StepHypRef Expression
1 ee11an.1 . 2  |-  ( ph  ->  ps )
2 ee11an.2 . 2  |-  ( ph  ->  ch )
3 ee11an.3 . . 3  |-  ( ( ps  /\  ch )  ->  th )
43ex 440 . 2  |-  ( ps 
->  ( ch  ->  th )
)
51, 2, 4sylc 62 1  |-  ( ph  ->  th )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 190  df-an 377
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator