MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecopqsi Unicode version

Theorem ecopqsi 6920
Description: "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996.)
Hypotheses
Ref Expression
ecopqsi.1  |-  R  e. 
_V
ecopqsi.2  |-  S  =  ( ( A  X.  A ) /. R
)
Assertion
Ref Expression
ecopqsi  |-  ( ( B  e.  A  /\  C  e.  A )  ->  [ <. B ,  C >. ] R  e.  S
)

Proof of Theorem ecopqsi
StepHypRef Expression
1 opelxpi 4869 . 2  |-  ( ( B  e.  A  /\  C  e.  A )  -> 
<. B ,  C >.  e.  ( A  X.  A
) )
2 ecopqsi.1 . . . 4  |-  R  e. 
_V
32ecelqsi 6919 . . 3  |-  ( <. B ,  C >.  e.  ( A  X.  A
)  ->  [ <. B ,  C >. ] R  e.  ( ( A  X.  A ) /. R
) )
4 ecopqsi.2 . . 3  |-  S  =  ( ( A  X.  A ) /. R
)
53, 4syl6eleqr 2495 . 2  |-  ( <. B ,  C >.  e.  ( A  X.  A
)  ->  [ <. B ,  C >. ] R  e.  S )
61, 5syl 16 1  |-  ( ( B  e.  A  /\  C  e.  A )  ->  [ <. B ,  C >. ] R  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916   <.cop 3777    X. cxp 4835   [cec 6862   /.cqs 6863
This theorem is referenced by:  brecop  6956  recexsrlem  8934
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-xp 4843  df-cnv 4845  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-ec 6866  df-qs 6870
  Copyright terms: Public domain W3C validator