Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e2bir Structured version   Unicode version

Theorem e2bir 36926
Description: Right biconditional form of e2 36924. syl6ibr 230 is e2bir 36926 without virtual deductions. (Contributed by Alan Sare, 29-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e2bir.1  |-  (. ph ,. ps  ->.  ch ).
e2bir.2  |-  ( th  <->  ch )
Assertion
Ref Expression
e2bir  |-  (. ph ,. ps  ->.  th ).

Proof of Theorem e2bir
StepHypRef Expression
1 e2bir.1 . 2  |-  (. ph ,. ps  ->.  ch ).
2 e2bir.2 . . 3  |-  ( th  <->  ch )
32biimpri 209 . 2  |-  ( ch 
->  th )
41, 3e2 36924 1  |-  (. ph ,. ps  ->.  th ).
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187   (.wvd2 36861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372  df-vd2 36862
This theorem is referenced by:  trsspwALT  37122  pwtrVD  37136  eqsbc3rVD  37152  tpid3gVD  37154  onfrALTlem1VD  37203
  Copyright terms: Public domain W3C validator