Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e1bi Structured version   Unicode version

Theorem e1bi 31050
Description: Biconditional form of e1_ 31048. sylib 196 is e1bi 31050 without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e1bi.1  |-  (. ph  ->.  ps
).
e1bi.2  |-  ( ps  <->  ch )
Assertion
Ref Expression
e1bi  |-  (. ph  ->.  ch
).

Proof of Theorem e1bi
StepHypRef Expression
1 e1bi.1 . 2  |-  (. ph  ->.  ps
).
2 e1bi.2 . . 3  |-  ( ps  <->  ch )
32biimpi 194 . 2  |-  ( ps 
->  ch )
41, 3e1_ 31048 1  |-  (. ph  ->.  ch
).
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184   (.wvd1 30980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-vd1 30981
This theorem is referenced by:  zfregs2VD  31276  tpid3gVD  31277  en3lplem2VD  31279  ordelordALTVD  31302
  Copyright terms: Public domain W3C validator