Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e11an Structured version   Visualization version   Unicode version

Theorem e11an 37068
Description: Conjunction form of e11 37067. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e11an.1  |-  (. ph  ->.  ps
).
e11an.2  |-  (. ph  ->.  ch
).
e11an.3  |-  ( ( ps  /\  ch )  ->  th )
Assertion
Ref Expression
e11an  |-  (. ph  ->.  th
).

Proof of Theorem e11an
StepHypRef Expression
1 e11an.1 . 2  |-  (. ph  ->.  ps
).
2 e11an.2 . 2  |-  (. ph  ->.  ch
).
3 e11an.3 . . 3  |-  ( ( ps  /\  ch )  ->  th )
43ex 436 . 2  |-  ( ps 
->  ( ch  ->  th )
)
51, 2, 4e11 37067 1  |-  (. ph  ->.  th
).
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371   (.wvd1 36939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 189  df-an 373  df-vd1 36940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator