MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmbllem Structured version   Unicode version

Theorem dyadmbllem 22499
Description: Lemma for dyadmbl 22500. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
dyadmbl.2  |-  G  =  { z  e.  A  |  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) }
dyadmbl.3  |-  ( ph  ->  A  C_  ran  F )
Assertion
Ref Expression
dyadmbllem  |-  ( ph  ->  U. ( [,] " A
)  =  U. ( [,] " G ) )
Distinct variable groups:    x, y    z, w, ph    x, w, y, A, z    z, G   
w, F, x, y, z
Allowed substitution hints:    ph( x, y)    G( x, y, w)

Proof of Theorem dyadmbllem
Dummy variables  a  m  t  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4166 . . . 4  |-  ( a  e.  U. ( [,] " A )  <->  E. i  e.  ( [,] " A
) a  e.  i )
2 iccf 11684 . . . . . . 7  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*
3 ffn 5689 . . . . . . 7  |-  ( [,]
: ( RR*  X.  RR* )
--> ~P RR*  ->  [,]  Fn  ( RR*  X.  RR* )
)
42, 3ax-mp 5 . . . . . 6  |-  [,]  Fn  ( RR*  X.  RR* )
5 dyadmbl.3 . . . . . . 7  |-  ( ph  ->  A  C_  ran  F )
6 dyadmbl.1 . . . . . . . . . 10  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
76dyadf 22491 . . . . . . . . 9  |-  F :
( ZZ  X.  NN0 )
--> (  <_  i^i  ( RR  X.  RR ) )
8 frn 5695 . . . . . . . . 9  |-  ( F : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  F 
C_  (  <_  i^i  ( RR  X.  RR ) ) )
97, 8ax-mp 5 . . . . . . . 8  |-  ran  F  C_  (  <_  i^i  ( RR  X.  RR ) )
10 inss2 3626 . . . . . . . . 9  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
11 rexpssxrxp 9636 . . . . . . . . 9  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
1210, 11sstri 3416 . . . . . . . 8  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
139, 12sstri 3416 . . . . . . 7  |-  ran  F  C_  ( RR*  X.  RR* )
145, 13syl6ss 3419 . . . . . 6  |-  ( ph  ->  A  C_  ( RR*  X. 
RR* ) )
15 eleq2 2495 . . . . . . 7  |-  ( i  =  ( [,] `  t
)  ->  ( a  e.  i  <->  a  e.  ( [,] `  t ) ) )
1615rexima 6103 . . . . . 6  |-  ( ( [,]  Fn  ( RR*  X. 
RR* )  /\  A  C_  ( RR*  X.  RR* )
)  ->  ( E. i  e.  ( [,] " A ) a  e.  i  <->  E. t  e.  A  a  e.  ( [,] `  t ) ) )
174, 14, 16sylancr 667 . . . . 5  |-  ( ph  ->  ( E. i  e.  ( [,] " A
) a  e.  i  <->  E. t  e.  A  a  e.  ( [,] `  t ) ) )
18 ssrab2 3489 . . . . . . . . 9  |-  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) }  C_  A
195adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  ->  A  C_  ran  F )
2018, 19syl5ss 3418 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  ->  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  C_  ran  F )
21 simprl 762 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  -> 
t  e.  A )
22 ssid 3426 . . . . . . . . . 10  |-  ( [,] `  t )  C_  ( [,] `  t )
23 fveq2 5825 . . . . . . . . . . . 12  |-  ( a  =  t  ->  ( [,] `  a )  =  ( [,] `  t
) )
2423sseq2d 3435 . . . . . . . . . . 11  |-  ( a  =  t  ->  (
( [,] `  t
)  C_  ( [,] `  a )  <->  ( [,] `  t )  C_  ( [,] `  t ) ) )
2524rspcev 3125 . . . . . . . . . 10  |-  ( ( t  e.  A  /\  ( [,] `  t ) 
C_  ( [,] `  t
) )  ->  E. a  e.  A  ( [,] `  t )  C_  ( [,] `  a ) )
2621, 22, 25sylancl 666 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  ->  E. a  e.  A  ( [,] `  t ) 
C_  ( [,] `  a
) )
27 rabn0 3725 . . . . . . . . 9  |-  ( { a  e.  A  | 
( [,] `  t
)  C_  ( [,] `  a ) }  =/=  (/)  <->  E. a  e.  A  ( [,] `  t ) 
C_  ( [,] `  a
) )
2826, 27sylibr 215 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  ->  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  =/=  (/) )
296dyadmax 22498 . . . . . . . 8  |-  ( ( { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  C_  ran  F  /\  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) }  =/=  (/) )  ->  E. m  e.  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) } A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )
3020, 28, 29syl2anc 665 . . . . . . 7  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  ->  E. m  e.  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) } A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )
31 fveq2 5825 . . . . . . . . . . 11  |-  ( a  =  m  ->  ( [,] `  a )  =  ( [,] `  m
) )
3231sseq2d 3435 . . . . . . . . . 10  |-  ( a  =  m  ->  (
( [,] `  t
)  C_  ( [,] `  a )  <->  ( [,] `  t )  C_  ( [,] `  m ) ) )
3332elrab 3171 . . . . . . . . 9  |-  ( m  e.  { a  e.  A  |  ( [,] `  t )  C_  ( [,] `  a ) }  <-> 
( m  e.  A  /\  ( [,] `  t
)  C_  ( [,] `  m ) ) )
34 simprlr 771 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  ( [,] `  t
)  C_  ( [,] `  m ) )
35 simplrr 769 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  a  e.  ( [,] `  t ) )
3634, 35sseldd 3408 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  a  e.  ( [,] `  m ) )
37 simprll 770 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  m  e.  A
)
38 fveq2 5825 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  =  w  ->  ( [,] `  a )  =  ( [,] `  w
) )
3938sseq2d 3435 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  w  ->  (
( [,] `  t
)  C_  ( [,] `  a )  <->  ( [,] `  t )  C_  ( [,] `  w ) ) )
4039elrab 3171 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  { a  e.  A  |  ( [,] `  t )  C_  ( [,] `  a ) }  <-> 
( w  e.  A  /\  ( [,] `  t
)  C_  ( [,] `  w ) ) )
4140imbi1i 326 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) }  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )  <->  ( (
w  e.  A  /\  ( [,] `  t ) 
C_  ( [,] `  w
) )  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )
42 impexp 447 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  A  /\  ( [,] `  t
)  C_  ( [,] `  w ) )  -> 
( ( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )  <->  ( w  e.  A  ->  ( ( [,] `  t ) 
C_  ( [,] `  w
)  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w ) ) ) )
4341, 42bitri 252 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) }  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )  <->  ( w  e.  A  ->  ( ( [,] `  t ) 
C_  ( [,] `  w
)  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w ) ) ) )
44 impexp 447 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( [,] `  t
)  C_  ( [,] `  w )  /\  ( [,] `  m )  C_  ( [,] `  w ) )  ->  m  =  w )  <->  ( ( [,] `  t )  C_  ( [,] `  w )  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w )
) )
45 sstr2 3414 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( [,] `  t ) 
C_  ( [,] `  m
)  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  ( [,] `  t
)  C_  ( [,] `  w ) ) )
4645ad2antll 733 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  ( [,] `  t
)  C_  ( [,] `  w ) ) )
4746ancrd 556 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  ( ( [,] `  t )  C_  ( [,] `  w )  /\  ( [,] `  m ) 
C_  ( [,] `  w
) ) ) )
4847imim1d 78 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( (
( ( [,] `  t
)  C_  ( [,] `  w )  /\  ( [,] `  m )  C_  ( [,] `  w ) )  ->  m  =  w )  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )
4944, 48syl5bir 221 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( (
( [,] `  t
)  C_  ( [,] `  w )  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )  -> 
( ( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )
5049imim2d 54 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( (
w  e.  A  -> 
( ( [,] `  t
)  C_  ( [,] `  w )  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  ( w  e.  A  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w ) ) ) )
5143, 50syl5bi 220 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( (
w  e.  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) }  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )  -> 
( w  e.  A  ->  ( ( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) ) )
5251ralimdv2 2772 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( A. w  e.  { a  e.  A  |  ( [,] `  t )  C_  ( [,] `  a ) }  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w )  ->  A. w  e.  A  ( ( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )
5352impr 623 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  A. w  e.  A  ( ( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )
54 fveq2 5825 . . . . . . . . . . . . . . . . 17  |-  ( z  =  m  ->  ( [,] `  z )  =  ( [,] `  m
) )
5554sseq1d 3434 . . . . . . . . . . . . . . . 16  |-  ( z  =  m  ->  (
( [,] `  z
)  C_  ( [,] `  w )  <->  ( [,] `  m )  C_  ( [,] `  w ) ) )
56 equequ1 1852 . . . . . . . . . . . . . . . 16  |-  ( z  =  m  ->  (
z  =  w  <->  m  =  w ) )
5755, 56imbi12d 321 . . . . . . . . . . . . . . 15  |-  ( z  =  m  ->  (
( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w ) ) )
5857ralbidv 2804 . . . . . . . . . . . . . 14  |-  ( z  =  m  ->  ( A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  A. w  e.  A  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w ) ) )
59 dyadmbl.2 . . . . . . . . . . . . . 14  |-  G  =  { z  e.  A  |  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) }
6058, 59elrab2 3173 . . . . . . . . . . . . 13  |-  ( m  e.  G  <->  ( m  e.  A  /\  A. w  e.  A  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w ) ) )
6137, 53, 60sylanbrc 668 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  m  e.  G
)
62 ffun 5691 . . . . . . . . . . . . . 14  |-  ( [,]
: ( RR*  X.  RR* )
--> ~P RR*  ->  Fun  [,] )
632, 62ax-mp 5 . . . . . . . . . . . . 13  |-  Fun  [,]
64 ssrab2 3489 . . . . . . . . . . . . . . . . 17  |-  { z  e.  A  |  A. w  e.  A  (
( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) }  C_  A
6559, 64eqsstri 3437 . . . . . . . . . . . . . . . 16  |-  G  C_  A
6665, 14syl5ss 3418 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G  C_  ( RR*  X. 
RR* ) )
672fdmi 5694 . . . . . . . . . . . . . . 15  |-  dom  [,]  =  ( RR*  X.  RR* )
6866, 67syl6sseqr 3454 . . . . . . . . . . . . . 14  |-  ( ph  ->  G  C_  dom  [,] )
6968ad2antrr 730 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  G  C_  dom  [,] )
70 funfvima2 6100 . . . . . . . . . . . . 13  |-  ( ( Fun  [,]  /\  G  C_  dom  [,] )  ->  (
m  e.  G  -> 
( [,] `  m
)  e.  ( [,] " G ) ) )
7163, 69, 70sylancr 667 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  ( m  e.  G  ->  ( [,] `  m )  e.  ( [,] " G ) ) )
7261, 71mpd 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  ( [,] `  m
)  e.  ( [,] " G ) )
73 elunii 4167 . . . . . . . . . . 11  |-  ( ( a  e.  ( [,] `  m )  /\  ( [,] `  m )  e.  ( [,] " G
) )  ->  a  e.  U. ( [,] " G
) )
7436, 72, 73syl2anc 665 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  a  e.  U. ( [,] " G ) )
7574exp32 608 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  -> 
( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  ->  ( A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w )  ->  a  e.  U. ( [,] " G
) ) ) )
7633, 75syl5bi 220 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  -> 
( m  e.  {
a  e.  A  | 
( [,] `  t
)  C_  ( [,] `  a ) }  ->  ( A. w  e.  {
a  e.  A  | 
( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w )  ->  a  e.  U. ( [,] " G
) ) ) )
7776rexlimdv 2854 . . . . . . 7  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  -> 
( E. m  e. 
{ a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) } A. w  e.  { a  e.  A  |  ( [,] `  t )  C_  ( [,] `  a ) }  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w )  ->  a  e.  U. ( [,] " G ) ) )
7830, 77mpd 15 . . . . . 6  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  -> 
a  e.  U. ( [,] " G ) )
7978rexlimdvaa 2857 . . . . 5  |-  ( ph  ->  ( E. t  e.  A  a  e.  ( [,] `  t )  ->  a  e.  U. ( [,] " G ) ) )
8017, 79sylbid 218 . . . 4  |-  ( ph  ->  ( E. i  e.  ( [,] " A
) a  e.  i  ->  a  e.  U. ( [,] " G ) ) )
811, 80syl5bi 220 . . 3  |-  ( ph  ->  ( a  e.  U. ( [,] " A )  ->  a  e.  U. ( [,] " G ) ) )
8281ssrdv 3413 . 2  |-  ( ph  ->  U. ( [,] " A
)  C_  U. ( [,] " G ) )
83 imass2 5166 . . . 4  |-  ( G 
C_  A  ->  ( [,] " G )  C_  ( [,] " A ) )
8465, 83ax-mp 5 . . 3  |-  ( [,] " G )  C_  ( [,] " A )
85 uniss 4183 . . 3  |-  ( ( [,] " G ) 
C_  ( [,] " A
)  ->  U. ( [,] " G )  C_  U. ( [,] " A
) )
8684, 85mp1i 13 . 2  |-  ( ph  ->  U. ( [,] " G
)  C_  U. ( [,] " A ) )
8782, 86eqssd 3424 1  |-  ( ph  ->  U. ( [,] " A
)  =  U. ( [,] " G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872    =/= wne 2599   A.wral 2714   E.wrex 2715   {crab 2718    i^i cin 3378    C_ wss 3379   (/)c0 3704   ~Pcpw 3924   <.cop 3947   U.cuni 4162    X. cxp 4794   dom cdm 4796   ran crn 4797   "cima 4799   Fun wfun 5538    Fn wfn 5539   -->wf 5540   ` cfv 5544  (class class class)co 6249    |-> cmpt2 6251   RRcr 9489   1c1 9491    + caddc 9493   RR*cxr 9625    <_ cle 9627    / cdiv 10220   2c2 10610   NN0cn0 10820   ZZcz 10888   [,]cicc 11589   ^cexp 12222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-inf2 8099  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-se 4756  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-isom 5553  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-om 6651  df-1st 6751  df-2nd 6752  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-1o 7137  df-oadd 7141  df-er 7318  df-map 7429  df-en 7525  df-dom 7526  df-sdom 7527  df-fin 7528  df-fi 7878  df-sup 7909  df-inf 7910  df-oi 7978  df-card 8325  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-div 10221  df-nn 10561  df-2 10619  df-3 10620  df-n0 10821  df-z 10889  df-uz 11111  df-q 11216  df-rp 11254  df-xneg 11360  df-xadd 11361  df-xmul 11362  df-ioo 11590  df-ico 11592  df-icc 11593  df-fz 11736  df-fzo 11867  df-seq 12164  df-exp 12223  df-hash 12466  df-cj 13106  df-re 13107  df-im 13108  df-sqrt 13242  df-abs 13243  df-clim 13495  df-sum 13696  df-rest 15264  df-topgen 15285  df-psmet 18905  df-xmet 18906  df-met 18907  df-bl 18908  df-mopn 18909  df-top 19863  df-bases 19864  df-topon 19865  df-cmp 20344  df-ovol 22358
This theorem is referenced by:  dyadmbl  22500  mblfinlem1  31884  mblfinlem2  31885
  Copyright terms: Public domain W3C validator