MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmbllem Unicode version

Theorem dyadmbllem 19444
Description: Lemma for dyadmbl 19445. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
dyadmbl.2  |-  G  =  { z  e.  A  |  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) }
dyadmbl.3  |-  ( ph  ->  A  C_  ran  F )
Assertion
Ref Expression
dyadmbllem  |-  ( ph  ->  U. ( [,] " A
)  =  U. ( [,] " G ) )
Distinct variable groups:    x, y    z, w, ph    x, w, y, A, z    z, G   
w, F, x, y, z
Allowed substitution hints:    ph( x, y)    G( x, y, w)

Proof of Theorem dyadmbllem
Dummy variables  a  m  t  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 3979 . . . 4  |-  ( a  e.  U. ( [,] " A )  <->  E. i  e.  ( [,] " A
) a  e.  i )
2 iccf 10959 . . . . . . 7  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*
3 ffn 5550 . . . . . . 7  |-  ( [,]
: ( RR*  X.  RR* )
--> ~P RR*  ->  [,]  Fn  ( RR*  X.  RR* )
)
42, 3ax-mp 8 . . . . . 6  |-  [,]  Fn  ( RR*  X.  RR* )
5 dyadmbl.3 . . . . . . 7  |-  ( ph  ->  A  C_  ran  F )
6 dyadmbl.1 . . . . . . . . . 10  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
76dyadf 19436 . . . . . . . . 9  |-  F :
( ZZ  X.  NN0 )
--> (  <_  i^i  ( RR  X.  RR ) )
8 frn 5556 . . . . . . . . 9  |-  ( F : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  F 
C_  (  <_  i^i  ( RR  X.  RR ) ) )
97, 8ax-mp 8 . . . . . . . 8  |-  ran  F  C_  (  <_  i^i  ( RR  X.  RR ) )
10 inss2 3522 . . . . . . . . 9  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
11 ressxr 9085 . . . . . . . . . 10  |-  RR  C_  RR*
12 xpss12 4940 . . . . . . . . . 10  |-  ( ( RR  C_  RR*  /\  RR  C_ 
RR* )  ->  ( RR  X.  RR )  C_  ( RR*  X.  RR* )
)
1311, 11, 12mp2an 654 . . . . . . . . 9  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
1410, 13sstri 3317 . . . . . . . 8  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
159, 14sstri 3317 . . . . . . 7  |-  ran  F  C_  ( RR*  X.  RR* )
165, 15syl6ss 3320 . . . . . 6  |-  ( ph  ->  A  C_  ( RR*  X. 
RR* ) )
17 eleq2 2465 . . . . . . 7  |-  ( i  =  ( [,] `  t
)  ->  ( a  e.  i  <->  a  e.  ( [,] `  t ) ) )
1817rexima 5936 . . . . . 6  |-  ( ( [,]  Fn  ( RR*  X. 
RR* )  /\  A  C_  ( RR*  X.  RR* )
)  ->  ( E. i  e.  ( [,] " A ) a  e.  i  <->  E. t  e.  A  a  e.  ( [,] `  t ) ) )
194, 16, 18sylancr 645 . . . . 5  |-  ( ph  ->  ( E. i  e.  ( [,] " A
) a  e.  i  <->  E. t  e.  A  a  e.  ( [,] `  t ) ) )
20 ssrab2 3388 . . . . . . . . 9  |-  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) }  C_  A
215adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  ->  A  C_  ran  F )
2220, 21syl5ss 3319 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  ->  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  C_  ran  F )
23 simprl 733 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  -> 
t  e.  A )
24 ssid 3327 . . . . . . . . . 10  |-  ( [,] `  t )  C_  ( [,] `  t )
25 fveq2 5687 . . . . . . . . . . . 12  |-  ( a  =  t  ->  ( [,] `  a )  =  ( [,] `  t
) )
2625sseq2d 3336 . . . . . . . . . . 11  |-  ( a  =  t  ->  (
( [,] `  t
)  C_  ( [,] `  a )  <->  ( [,] `  t )  C_  ( [,] `  t ) ) )
2726rspcev 3012 . . . . . . . . . 10  |-  ( ( t  e.  A  /\  ( [,] `  t ) 
C_  ( [,] `  t
) )  ->  E. a  e.  A  ( [,] `  t )  C_  ( [,] `  a ) )
2823, 24, 27sylancl 644 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  ->  E. a  e.  A  ( [,] `  t ) 
C_  ( [,] `  a
) )
29 rabn0 3607 . . . . . . . . 9  |-  ( { a  e.  A  | 
( [,] `  t
)  C_  ( [,] `  a ) }  =/=  (/)  <->  E. a  e.  A  ( [,] `  t ) 
C_  ( [,] `  a
) )
3028, 29sylibr 204 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  ->  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  =/=  (/) )
316dyadmax 19443 . . . . . . . 8  |-  ( ( { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  C_  ran  F  /\  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) }  =/=  (/) )  ->  E. m  e.  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) } A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )
3222, 30, 31syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  ->  E. m  e.  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) } A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )
33 fveq2 5687 . . . . . . . . . . 11  |-  ( a  =  m  ->  ( [,] `  a )  =  ( [,] `  m
) )
3433sseq2d 3336 . . . . . . . . . 10  |-  ( a  =  m  ->  (
( [,] `  t
)  C_  ( [,] `  a )  <->  ( [,] `  t )  C_  ( [,] `  m ) ) )
3534elrab 3052 . . . . . . . . 9  |-  ( m  e.  { a  e.  A  |  ( [,] `  t )  C_  ( [,] `  a ) }  <-> 
( m  e.  A  /\  ( [,] `  t
)  C_  ( [,] `  m ) ) )
36 simprlr 740 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  ( [,] `  t
)  C_  ( [,] `  m ) )
37 simplrr 738 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  a  e.  ( [,] `  t ) )
3836, 37sseldd 3309 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  a  e.  ( [,] `  m ) )
39 simprll 739 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  m  e.  A
)
40 fveq2 5687 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  =  w  ->  ( [,] `  a )  =  ( [,] `  w
) )
4140sseq2d 3336 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  w  ->  (
( [,] `  t
)  C_  ( [,] `  a )  <->  ( [,] `  t )  C_  ( [,] `  w ) ) )
4241elrab 3052 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  { a  e.  A  |  ( [,] `  t )  C_  ( [,] `  a ) }  <-> 
( w  e.  A  /\  ( [,] `  t
)  C_  ( [,] `  w ) ) )
4342imbi1i 316 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) }  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )  <->  ( (
w  e.  A  /\  ( [,] `  t ) 
C_  ( [,] `  w
) )  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )
44 impexp 434 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  A  /\  ( [,] `  t
)  C_  ( [,] `  w ) )  -> 
( ( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )  <->  ( w  e.  A  ->  ( ( [,] `  t ) 
C_  ( [,] `  w
)  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w ) ) ) )
4543, 44bitri 241 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) }  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )  <->  ( w  e.  A  ->  ( ( [,] `  t ) 
C_  ( [,] `  w
)  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w ) ) ) )
46 impexp 434 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( [,] `  t
)  C_  ( [,] `  w )  /\  ( [,] `  m )  C_  ( [,] `  w ) )  ->  m  =  w )  <->  ( ( [,] `  t )  C_  ( [,] `  w )  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w )
) )
47 sstr2 3315 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( [,] `  t ) 
C_  ( [,] `  m
)  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  ( [,] `  t
)  C_  ( [,] `  w ) ) )
4847ad2antll 710 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  ( [,] `  t
)  C_  ( [,] `  w ) ) )
4948ancrd 538 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  ( ( [,] `  t )  C_  ( [,] `  w )  /\  ( [,] `  m ) 
C_  ( [,] `  w
) ) ) )
5049imim1d 71 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( (
( ( [,] `  t
)  C_  ( [,] `  w )  /\  ( [,] `  m )  C_  ( [,] `  w ) )  ->  m  =  w )  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )
5146, 50syl5bir 210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( (
( [,] `  t
)  C_  ( [,] `  w )  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )  -> 
( ( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )
5251imim2d 50 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( (
w  e.  A  -> 
( ( [,] `  t
)  C_  ( [,] `  w )  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  ( w  e.  A  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w ) ) ) )
5345, 52syl5bi 209 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( (
w  e.  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) }  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )  -> 
( w  e.  A  ->  ( ( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) ) )
5453ralimdv2 2746 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( A. w  e.  { a  e.  A  |  ( [,] `  t )  C_  ( [,] `  a ) }  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w )  ->  A. w  e.  A  ( ( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )
5554impr 603 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  A. w  e.  A  ( ( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )
56 fveq2 5687 . . . . . . . . . . . . . . . . 17  |-  ( z  =  m  ->  ( [,] `  z )  =  ( [,] `  m
) )
5756sseq1d 3335 . . . . . . . . . . . . . . . 16  |-  ( z  =  m  ->  (
( [,] `  z
)  C_  ( [,] `  w )  <->  ( [,] `  m )  C_  ( [,] `  w ) ) )
58 equequ1 1692 . . . . . . . . . . . . . . . 16  |-  ( z  =  m  ->  (
z  =  w  <->  m  =  w ) )
5957, 58imbi12d 312 . . . . . . . . . . . . . . 15  |-  ( z  =  m  ->  (
( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w ) ) )
6059ralbidv 2686 . . . . . . . . . . . . . 14  |-  ( z  =  m  ->  ( A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  A. w  e.  A  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w ) ) )
61 dyadmbl.2 . . . . . . . . . . . . . 14  |-  G  =  { z  e.  A  |  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) }
6260, 61elrab2 3054 . . . . . . . . . . . . 13  |-  ( m  e.  G  <->  ( m  e.  A  /\  A. w  e.  A  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w ) ) )
6339, 55, 62sylanbrc 646 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  m  e.  G
)
64 ffun 5552 . . . . . . . . . . . . . 14  |-  ( [,]
: ( RR*  X.  RR* )
--> ~P RR*  ->  Fun  [,] )
652, 64ax-mp 8 . . . . . . . . . . . . 13  |-  Fun  [,]
66 ssrab2 3388 . . . . . . . . . . . . . . . . 17  |-  { z  e.  A  |  A. w  e.  A  (
( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) }  C_  A
6761, 66eqsstri 3338 . . . . . . . . . . . . . . . 16  |-  G  C_  A
6867, 16syl5ss 3319 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G  C_  ( RR*  X. 
RR* ) )
692fdmi 5555 . . . . . . . . . . . . . . 15  |-  dom  [,]  =  ( RR*  X.  RR* )
7068, 69syl6sseqr 3355 . . . . . . . . . . . . . 14  |-  ( ph  ->  G  C_  dom  [,] )
7170ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  G  C_  dom  [,] )
72 funfvima2 5933 . . . . . . . . . . . . 13  |-  ( ( Fun  [,]  /\  G  C_  dom  [,] )  ->  (
m  e.  G  -> 
( [,] `  m
)  e.  ( [,] " G ) ) )
7365, 71, 72sylancr 645 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  ( m  e.  G  ->  ( [,] `  m )  e.  ( [,] " G ) ) )
7463, 73mpd 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  ( [,] `  m
)  e.  ( [,] " G ) )
75 elunii 3980 . . . . . . . . . . 11  |-  ( ( a  e.  ( [,] `  m )  /\  ( [,] `  m )  e.  ( [,] " G
) )  ->  a  e.  U. ( [,] " G
) )
7638, 74, 75syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  a  e.  U. ( [,] " G ) )
7776exp32 589 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  -> 
( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  ->  ( A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w )  ->  a  e.  U. ( [,] " G
) ) ) )
7835, 77syl5bi 209 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  -> 
( m  e.  {
a  e.  A  | 
( [,] `  t
)  C_  ( [,] `  a ) }  ->  ( A. w  e.  {
a  e.  A  | 
( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w )  ->  a  e.  U. ( [,] " G
) ) ) )
7978rexlimdv 2789 . . . . . . 7  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  -> 
( E. m  e. 
{ a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) } A. w  e.  { a  e.  A  |  ( [,] `  t )  C_  ( [,] `  a ) }  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w )  ->  a  e.  U. ( [,] " G ) ) )
8032, 79mpd 15 . . . . . 6  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  -> 
a  e.  U. ( [,] " G ) )
8180rexlimdvaa 2791 . . . . 5  |-  ( ph  ->  ( E. t  e.  A  a  e.  ( [,] `  t )  ->  a  e.  U. ( [,] " G ) ) )
8219, 81sylbid 207 . . . 4  |-  ( ph  ->  ( E. i  e.  ( [,] " A
) a  e.  i  ->  a  e.  U. ( [,] " G ) ) )
831, 82syl5bi 209 . . 3  |-  ( ph  ->  ( a  e.  U. ( [,] " A )  ->  a  e.  U. ( [,] " G ) ) )
8483ssrdv 3314 . 2  |-  ( ph  ->  U. ( [,] " A
)  C_  U. ( [,] " G ) )
85 imass2 5199 . . . 4  |-  ( G 
C_  A  ->  ( [,] " G )  C_  ( [,] " A ) )
8667, 85ax-mp 8 . . 3  |-  ( [,] " G )  C_  ( [,] " A )
87 uniss 3996 . . 3  |-  ( ( [,] " G ) 
C_  ( [,] " A
)  ->  U. ( [,] " G )  C_  U. ( [,] " A
) )
8886, 87mp1i 12 . 2  |-  ( ph  ->  U. ( [,] " G
)  C_  U. ( [,] " A ) )
8984, 88eqssd 3325 1  |-  ( ph  ->  U. ( [,] " A
)  =  U. ( [,] " G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   {crab 2670    i^i cin 3279    C_ wss 3280   (/)c0 3588   ~Pcpw 3759   <.cop 3777   U.cuni 3975    X. cxp 4835   dom cdm 4837   ran crn 4838   "cima 4840   Fun wfun 5407    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   RRcr 8945   1c1 8947    + caddc 8949   RR*cxr 9075    <_ cle 9077    / cdiv 9633   2c2 10005   NN0cn0 10177   ZZcz 10238   [,]cicc 10875   ^cexp 11337
This theorem is referenced by:  dyadmbl  19445  mblfinlem  26143
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435  df-rest 13605  df-topgen 13622  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-top 16918  df-bases 16920  df-topon 16921  df-cmp 17404  df-ovol 19314
  Copyright terms: Public domain W3C validator