MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmbllem Structured version   Unicode version

Theorem dyadmbllem 21213
Description: Lemma for dyadmbl 21214. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
dyadmbl.2  |-  G  =  { z  e.  A  |  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) }
dyadmbl.3  |-  ( ph  ->  A  C_  ran  F )
Assertion
Ref Expression
dyadmbllem  |-  ( ph  ->  U. ( [,] " A
)  =  U. ( [,] " G ) )
Distinct variable groups:    x, y    z, w, ph    x, w, y, A, z    z, G   
w, F, x, y, z
Allowed substitution hints:    ph( x, y)    G( x, y, w)

Proof of Theorem dyadmbllem
Dummy variables  a  m  t  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4204 . . . 4  |-  ( a  e.  U. ( [,] " A )  <->  E. i  e.  ( [,] " A
) a  e.  i )
2 iccf 11506 . . . . . . 7  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*
3 ffn 5668 . . . . . . 7  |-  ( [,]
: ( RR*  X.  RR* )
--> ~P RR*  ->  [,]  Fn  ( RR*  X.  RR* )
)
42, 3ax-mp 5 . . . . . 6  |-  [,]  Fn  ( RR*  X.  RR* )
5 dyadmbl.3 . . . . . . 7  |-  ( ph  ->  A  C_  ran  F )
6 dyadmbl.1 . . . . . . . . . 10  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
76dyadf 21205 . . . . . . . . 9  |-  F :
( ZZ  X.  NN0 )
--> (  <_  i^i  ( RR  X.  RR ) )
8 frn 5674 . . . . . . . . 9  |-  ( F : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  F 
C_  (  <_  i^i  ( RR  X.  RR ) ) )
97, 8ax-mp 5 . . . . . . . 8  |-  ran  F  C_  (  <_  i^i  ( RR  X.  RR ) )
10 inss2 3680 . . . . . . . . 9  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
11 rexpssxrxp 9540 . . . . . . . . 9  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
1210, 11sstri 3474 . . . . . . . 8  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
139, 12sstri 3474 . . . . . . 7  |-  ran  F  C_  ( RR*  X.  RR* )
145, 13syl6ss 3477 . . . . . 6  |-  ( ph  ->  A  C_  ( RR*  X. 
RR* ) )
15 eleq2 2527 . . . . . . 7  |-  ( i  =  ( [,] `  t
)  ->  ( a  e.  i  <->  a  e.  ( [,] `  t ) ) )
1615rexima 6066 . . . . . 6  |-  ( ( [,]  Fn  ( RR*  X. 
RR* )  /\  A  C_  ( RR*  X.  RR* )
)  ->  ( E. i  e.  ( [,] " A ) a  e.  i  <->  E. t  e.  A  a  e.  ( [,] `  t ) ) )
174, 14, 16sylancr 663 . . . . 5  |-  ( ph  ->  ( E. i  e.  ( [,] " A
) a  e.  i  <->  E. t  e.  A  a  e.  ( [,] `  t ) ) )
18 ssrab2 3546 . . . . . . . . 9  |-  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) }  C_  A
195adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  ->  A  C_  ran  F )
2018, 19syl5ss 3476 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  ->  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  C_  ran  F )
21 simprl 755 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  -> 
t  e.  A )
22 ssid 3484 . . . . . . . . . 10  |-  ( [,] `  t )  C_  ( [,] `  t )
23 fveq2 5800 . . . . . . . . . . . 12  |-  ( a  =  t  ->  ( [,] `  a )  =  ( [,] `  t
) )
2423sseq2d 3493 . . . . . . . . . . 11  |-  ( a  =  t  ->  (
( [,] `  t
)  C_  ( [,] `  a )  <->  ( [,] `  t )  C_  ( [,] `  t ) ) )
2524rspcev 3179 . . . . . . . . . 10  |-  ( ( t  e.  A  /\  ( [,] `  t ) 
C_  ( [,] `  t
) )  ->  E. a  e.  A  ( [,] `  t )  C_  ( [,] `  a ) )
2621, 22, 25sylancl 662 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  ->  E. a  e.  A  ( [,] `  t ) 
C_  ( [,] `  a
) )
27 rabn0 3766 . . . . . . . . 9  |-  ( { a  e.  A  | 
( [,] `  t
)  C_  ( [,] `  a ) }  =/=  (/)  <->  E. a  e.  A  ( [,] `  t ) 
C_  ( [,] `  a
) )
2826, 27sylibr 212 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  ->  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  =/=  (/) )
296dyadmax 21212 . . . . . . . 8  |-  ( ( { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  C_  ran  F  /\  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) }  =/=  (/) )  ->  E. m  e.  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) } A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )
3020, 28, 29syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  ->  E. m  e.  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) } A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )
31 fveq2 5800 . . . . . . . . . . 11  |-  ( a  =  m  ->  ( [,] `  a )  =  ( [,] `  m
) )
3231sseq2d 3493 . . . . . . . . . 10  |-  ( a  =  m  ->  (
( [,] `  t
)  C_  ( [,] `  a )  <->  ( [,] `  t )  C_  ( [,] `  m ) ) )
3332elrab 3224 . . . . . . . . 9  |-  ( m  e.  { a  e.  A  |  ( [,] `  t )  C_  ( [,] `  a ) }  <-> 
( m  e.  A  /\  ( [,] `  t
)  C_  ( [,] `  m ) ) )
34 simprlr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  ( [,] `  t
)  C_  ( [,] `  m ) )
35 simplrr 760 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  a  e.  ( [,] `  t ) )
3634, 35sseldd 3466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  a  e.  ( [,] `  m ) )
37 simprll 761 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  m  e.  A
)
38 fveq2 5800 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  =  w  ->  ( [,] `  a )  =  ( [,] `  w
) )
3938sseq2d 3493 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  w  ->  (
( [,] `  t
)  C_  ( [,] `  a )  <->  ( [,] `  t )  C_  ( [,] `  w ) ) )
4039elrab 3224 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  { a  e.  A  |  ( [,] `  t )  C_  ( [,] `  a ) }  <-> 
( w  e.  A  /\  ( [,] `  t
)  C_  ( [,] `  w ) ) )
4140imbi1i 325 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) }  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )  <->  ( (
w  e.  A  /\  ( [,] `  t ) 
C_  ( [,] `  w
) )  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )
42 impexp 446 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  A  /\  ( [,] `  t
)  C_  ( [,] `  w ) )  -> 
( ( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )  <->  ( w  e.  A  ->  ( ( [,] `  t ) 
C_  ( [,] `  w
)  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w ) ) ) )
4341, 42bitri 249 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) }  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )  <->  ( w  e.  A  ->  ( ( [,] `  t ) 
C_  ( [,] `  w
)  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w ) ) ) )
44 impexp 446 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( [,] `  t
)  C_  ( [,] `  w )  /\  ( [,] `  m )  C_  ( [,] `  w ) )  ->  m  =  w )  <->  ( ( [,] `  t )  C_  ( [,] `  w )  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w )
) )
45 sstr2 3472 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( [,] `  t ) 
C_  ( [,] `  m
)  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  ( [,] `  t
)  C_  ( [,] `  w ) ) )
4645ad2antll 728 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  ( [,] `  t
)  C_  ( [,] `  w ) ) )
4746ancrd 554 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  ( ( [,] `  t )  C_  ( [,] `  w )  /\  ( [,] `  m ) 
C_  ( [,] `  w
) ) ) )
4847imim1d 75 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( (
( ( [,] `  t
)  C_  ( [,] `  w )  /\  ( [,] `  m )  C_  ( [,] `  w ) )  ->  m  =  w )  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )
4944, 48syl5bir 218 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( (
( [,] `  t
)  C_  ( [,] `  w )  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )  -> 
( ( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )
5049imim2d 52 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( (
w  e.  A  -> 
( ( [,] `  t
)  C_  ( [,] `  w )  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  ( w  e.  A  ->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w ) ) ) )
5143, 50syl5bi 217 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( (
w  e.  { a  e.  A  |  ( [,] `  t ) 
C_  ( [,] `  a
) }  ->  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )  -> 
( w  e.  A  ->  ( ( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) ) )
5251ralimdv2 2905 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) ) )  ->  ( A. w  e.  { a  e.  A  |  ( [,] `  t )  C_  ( [,] `  a ) }  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w )  ->  A. w  e.  A  ( ( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )
5352impr 619 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  A. w  e.  A  ( ( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) )
54 fveq2 5800 . . . . . . . . . . . . . . . . 17  |-  ( z  =  m  ->  ( [,] `  z )  =  ( [,] `  m
) )
5554sseq1d 3492 . . . . . . . . . . . . . . . 16  |-  ( z  =  m  ->  (
( [,] `  z
)  C_  ( [,] `  w )  <->  ( [,] `  m )  C_  ( [,] `  w ) ) )
56 equequ1 1738 . . . . . . . . . . . . . . . 16  |-  ( z  =  m  ->  (
z  =  w  <->  m  =  w ) )
5755, 56imbi12d 320 . . . . . . . . . . . . . . 15  |-  ( z  =  m  ->  (
( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w ) ) )
5857ralbidv 2846 . . . . . . . . . . . . . 14  |-  ( z  =  m  ->  ( A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  A. w  e.  A  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w ) ) )
59 dyadmbl.2 . . . . . . . . . . . . . 14  |-  G  =  { z  e.  A  |  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) }
6058, 59elrab2 3226 . . . . . . . . . . . . 13  |-  ( m  e.  G  <->  ( m  e.  A  /\  A. w  e.  A  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w ) ) )
6137, 53, 60sylanbrc 664 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  m  e.  G
)
62 ffun 5670 . . . . . . . . . . . . . 14  |-  ( [,]
: ( RR*  X.  RR* )
--> ~P RR*  ->  Fun  [,] )
632, 62ax-mp 5 . . . . . . . . . . . . 13  |-  Fun  [,]
64 ssrab2 3546 . . . . . . . . . . . . . . . . 17  |-  { z  e.  A  |  A. w  e.  A  (
( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) }  C_  A
6559, 64eqsstri 3495 . . . . . . . . . . . . . . . 16  |-  G  C_  A
6665, 14syl5ss 3476 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G  C_  ( RR*  X. 
RR* ) )
672fdmi 5673 . . . . . . . . . . . . . . 15  |-  dom  [,]  =  ( RR*  X.  RR* )
6866, 67syl6sseqr 3512 . . . . . . . . . . . . . 14  |-  ( ph  ->  G  C_  dom  [,] )
6968ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  G  C_  dom  [,] )
70 funfvima2 6063 . . . . . . . . . . . . 13  |-  ( ( Fun  [,]  /\  G  C_  dom  [,] )  ->  (
m  e.  G  -> 
( [,] `  m
)  e.  ( [,] " G ) ) )
7163, 69, 70sylancr 663 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  ( m  e.  G  ->  ( [,] `  m )  e.  ( [,] " G ) ) )
7261, 71mpd 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  ( [,] `  m
)  e.  ( [,] " G ) )
73 elunii 4205 . . . . . . . . . . 11  |-  ( ( a  e.  ( [,] `  m )  /\  ( [,] `  m )  e.  ( [,] " G
) )  ->  a  e.  U. ( [,] " G
) )
7436, 72, 73syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
t  e.  A  /\  a  e.  ( [,] `  t ) ) )  /\  ( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  /\  A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w ) ) )  ->  a  e.  U. ( [,] " G ) )
7574exp32 605 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  -> 
( ( m  e.  A  /\  ( [,] `  t )  C_  ( [,] `  m ) )  ->  ( A. w  e.  { a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w )  ->  a  e.  U. ( [,] " G
) ) ) )
7633, 75syl5bi 217 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  -> 
( m  e.  {
a  e.  A  | 
( [,] `  t
)  C_  ( [,] `  a ) }  ->  ( A. w  e.  {
a  e.  A  | 
( [,] `  t
)  C_  ( [,] `  a ) }  (
( [,] `  m
)  C_  ( [,] `  w )  ->  m  =  w )  ->  a  e.  U. ( [,] " G
) ) ) )
7776rexlimdv 2946 . . . . . . 7  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  -> 
( E. m  e. 
{ a  e.  A  |  ( [,] `  t
)  C_  ( [,] `  a ) } A. w  e.  { a  e.  A  |  ( [,] `  t )  C_  ( [,] `  a ) }  ( ( [,] `  m )  C_  ( [,] `  w )  ->  m  =  w )  ->  a  e.  U. ( [,] " G ) ) )
7830, 77mpd 15 . . . . . 6  |-  ( (
ph  /\  ( t  e.  A  /\  a  e.  ( [,] `  t
) ) )  -> 
a  e.  U. ( [,] " G ) )
7978rexlimdvaa 2948 . . . . 5  |-  ( ph  ->  ( E. t  e.  A  a  e.  ( [,] `  t )  ->  a  e.  U. ( [,] " G ) ) )
8017, 79sylbid 215 . . . 4  |-  ( ph  ->  ( E. i  e.  ( [,] " A
) a  e.  i  ->  a  e.  U. ( [,] " G ) ) )
811, 80syl5bi 217 . . 3  |-  ( ph  ->  ( a  e.  U. ( [,] " A )  ->  a  e.  U. ( [,] " G ) ) )
8281ssrdv 3471 . 2  |-  ( ph  ->  U. ( [,] " A
)  C_  U. ( [,] " G ) )
83 imass2 5313 . . . 4  |-  ( G 
C_  A  ->  ( [,] " G )  C_  ( [,] " A ) )
8465, 83ax-mp 5 . . 3  |-  ( [,] " G )  C_  ( [,] " A )
85 uniss 4221 . . 3  |-  ( ( [,] " G ) 
C_  ( [,] " A
)  ->  U. ( [,] " G )  C_  U. ( [,] " A
) )
8684, 85mp1i 12 . 2  |-  ( ph  ->  U. ( [,] " G
)  C_  U. ( [,] " A ) )
8782, 86eqssd 3482 1  |-  ( ph  ->  U. ( [,] " A
)  =  U. ( [,] " G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2648   A.wral 2799   E.wrex 2800   {crab 2803    i^i cin 3436    C_ wss 3437   (/)c0 3746   ~Pcpw 3969   <.cop 3992   U.cuni 4200    X. cxp 4947   dom cdm 4949   ran crn 4950   "cima 4952   Fun wfun 5521    Fn wfn 5522   -->wf 5523   ` cfv 5527  (class class class)co 6201    |-> cmpt2 6203   RRcr 9393   1c1 9395    + caddc 9397   RR*cxr 9529    <_ cle 9531    / cdiv 10105   2c2 10483   NN0cn0 10691   ZZcz 10758   [,]cicc 11415   ^cexp 11983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-inf2 7959  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471  ax-pre-sup 9472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-int 4238  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-se 4789  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-isom 5536  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-1st 6688  df-2nd 6689  df-recs 6943  df-rdg 6977  df-1o 7031  df-oadd 7035  df-er 7212  df-map 7327  df-en 7422  df-dom 7423  df-sdom 7424  df-fin 7425  df-fi 7773  df-sup 7803  df-oi 7836  df-card 8221  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-div 10106  df-nn 10435  df-2 10492  df-3 10493  df-n0 10692  df-z 10759  df-uz 10974  df-q 11066  df-rp 11104  df-xneg 11201  df-xadd 11202  df-xmul 11203  df-ioo 11416  df-ico 11418  df-icc 11419  df-fz 11556  df-fzo 11667  df-seq 11925  df-exp 11984  df-hash 12222  df-cj 12707  df-re 12708  df-im 12709  df-sqr 12843  df-abs 12844  df-clim 13085  df-sum 13283  df-rest 14481  df-topgen 14502  df-psmet 17935  df-xmet 17936  df-met 17937  df-bl 17938  df-mopn 17939  df-top 18636  df-bases 18638  df-topon 18639  df-cmp 19123  df-ovol 21081
This theorem is referenced by:  dyadmbl  21214  mblfinlem1  28577  mblfinlem2  28578
  Copyright terms: Public domain W3C validator