MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmbl Structured version   Unicode version

Theorem dyadmbl 21737
Description: Any union of dyadic rational intervals is measurable. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
dyadmbl.2  |-  G  =  { z  e.  A  |  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) }
dyadmbl.3  |-  ( ph  ->  A  C_  ran  F )
Assertion
Ref Expression
dyadmbl  |-  ( ph  ->  U. ( [,] " A
)  e.  dom  vol )
Distinct variable groups:    x, y    z, w, ph    x, w, y, A, z    z, G   
w, F, x, y, z
Allowed substitution hints:    ph( x, y)    G( x, y, w)

Proof of Theorem dyadmbl
Dummy variables  f 
a  b  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dyadmbl.1 . . 3  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
2 dyadmbl.2 . . 3  |-  G  =  { z  e.  A  |  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) }
3 dyadmbl.3 . . 3  |-  ( ph  ->  A  C_  ran  F )
41, 2, 3dyadmbllem 21736 . 2  |-  ( ph  ->  U. ( [,] " A
)  =  U. ( [,] " G ) )
5 isfinite 8058 . . . 4  |-  ( G  e.  Fin  <->  G  ~<  om )
6 iccf 11612 . . . . . 6  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*
7 ffun 5724 . . . . . 6  |-  ( [,]
: ( RR*  X.  RR* )
--> ~P RR*  ->  Fun  [,] )
8 funiunfv 6139 . . . . . 6  |-  ( Fun 
[,]  ->  U_ n  e.  G  ( [,] `  n )  =  U. ( [,] " G ) )
96, 7, 8mp2b 10 . . . . 5  |-  U_ n  e.  G  ( [,] `  n )  =  U. ( [,] " G )
10 simpr 461 . . . . . 6  |-  ( (
ph  /\  G  e.  Fin )  ->  G  e. 
Fin )
11 ssrab2 3578 . . . . . . . . . . . . . . . 16  |-  { z  e.  A  |  A. w  e.  A  (
( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) }  C_  A
122, 11eqsstri 3527 . . . . . . . . . . . . . . 15  |-  G  C_  A
1312, 3syl5ss 3508 . . . . . . . . . . . . . 14  |-  ( ph  ->  G  C_  ran  F )
141dyadf 21728 . . . . . . . . . . . . . . . 16  |-  F :
( ZZ  X.  NN0 )
--> (  <_  i^i  ( RR  X.  RR ) )
15 frn 5728 . . . . . . . . . . . . . . . 16  |-  ( F : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  F 
C_  (  <_  i^i  ( RR  X.  RR ) ) )
1614, 15ax-mp 5 . . . . . . . . . . . . . . 15  |-  ran  F  C_  (  <_  i^i  ( RR  X.  RR ) )
17 inss2 3712 . . . . . . . . . . . . . . 15  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
1816, 17sstri 3506 . . . . . . . . . . . . . 14  |-  ran  F  C_  ( RR  X.  RR )
1913, 18syl6ss 3509 . . . . . . . . . . . . 13  |-  ( ph  ->  G  C_  ( RR  X.  RR ) )
2019adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  G  e.  Fin )  ->  G  C_  ( RR  X.  RR ) )
2120sselda 3497 . . . . . . . . . . 11  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  n  e.  ( RR  X.  RR ) )
22 1st2nd2 6811 . . . . . . . . . . 11  |-  ( n  e.  ( RR  X.  RR )  ->  n  = 
<. ( 1st `  n
) ,  ( 2nd `  n ) >. )
2321, 22syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >. )
2423fveq2d 5861 . . . . . . . . 9  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  ( [,] `  n )  =  ( [,] `  <. ( 1st `  n ) ,  ( 2nd `  n
) >. ) )
25 df-ov 6278 . . . . . . . . 9  |-  ( ( 1st `  n ) [,] ( 2nd `  n
) )  =  ( [,] `  <. ( 1st `  n ) ,  ( 2nd `  n
) >. )
2624, 25syl6eqr 2519 . . . . . . . 8  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  ( [,] `  n )  =  ( ( 1st `  n
) [,] ( 2nd `  n ) ) )
27 xp1st 6804 . . . . . . . . . 10  |-  ( n  e.  ( RR  X.  RR )  ->  ( 1st `  n )  e.  RR )
2821, 27syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  ( 1st `  n )  e.  RR )
29 xp2nd 6805 . . . . . . . . . 10  |-  ( n  e.  ( RR  X.  RR )  ->  ( 2nd `  n )  e.  RR )
3021, 29syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  ( 2nd `  n )  e.  RR )
31 iccmbl 21704 . . . . . . . . 9  |-  ( ( ( 1st `  n
)  e.  RR  /\  ( 2nd `  n )  e.  RR )  -> 
( ( 1st `  n
) [,] ( 2nd `  n ) )  e. 
dom  vol )
3228, 30, 31syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  (
( 1st `  n
) [,] ( 2nd `  n ) )  e. 
dom  vol )
3326, 32eqeltrd 2548 . . . . . . 7  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  ( [,] `  n )  e. 
dom  vol )
3433ralrimiva 2871 . . . . . 6  |-  ( (
ph  /\  G  e.  Fin )  ->  A. n  e.  G  ( [,] `  n )  e.  dom  vol )
35 finiunmbl 21682 . . . . . 6  |-  ( ( G  e.  Fin  /\  A. n  e.  G  ( [,] `  n )  e.  dom  vol )  ->  U_ n  e.  G  ( [,] `  n )  e.  dom  vol )
3610, 34, 35syl2anc 661 . . . . 5  |-  ( (
ph  /\  G  e.  Fin )  ->  U_ n  e.  G  ( [,] `  n )  e.  dom  vol )
379, 36syl5eqelr 2553 . . . 4  |-  ( (
ph  /\  G  e.  Fin )  ->  U. ( [,] " G )  e. 
dom  vol )
385, 37sylan2br 476 . . 3  |-  ( (
ph  /\  G  ~<  om )  ->  U. ( [,] " G )  e. 
dom  vol )
39 nnenom 12046 . . . . . . 7  |-  NN  ~~  om
40 ensym 7554 . . . . . . 7  |-  ( G 
~~  om  ->  om  ~~  G )
41 entr 7557 . . . . . . 7  |-  ( ( NN  ~~  om  /\  om 
~~  G )  ->  NN  ~~  G )
4239, 40, 41sylancr 663 . . . . . 6  |-  ( G 
~~  om  ->  NN  ~~  G )
43 bren 7515 . . . . . 6  |-  ( NN 
~~  G  <->  E. f 
f : NN -1-1-onto-> G )
4442, 43sylib 196 . . . . 5  |-  ( G 
~~  om  ->  E. f 
f : NN -1-1-onto-> G )
45 rnco2 5505 . . . . . . . . . 10  |-  ran  ( [,]  o.  f )  =  ( [,] " ran  f )
46 f1ofo 5814 . . . . . . . . . . . . 13  |-  ( f : NN -1-1-onto-> G  ->  f : NN -onto-> G )
4746adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  f : NN -onto-> G )
48 forn 5789 . . . . . . . . . . . 12  |-  ( f : NN -onto-> G  ->  ran  f  =  G
)
4947, 48syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  ran  f  =  G )
5049imaeq2d 5328 . . . . . . . . . 10  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  ( [,] " ran  f )  =  ( [,] " G
) )
5145, 50syl5eq 2513 . . . . . . . . 9  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  ran  ( [,]  o.  f )  =  ( [,] " G
) )
5251unieqd 4248 . . . . . . . 8  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  U. ran  ( [,]  o.  f )  =  U. ( [,] " G ) )
53 f1of 5807 . . . . . . . . . 10  |-  ( f : NN -1-1-onto-> G  ->  f : NN
--> G )
5413, 16syl6ss 3509 . . . . . . . . . 10  |-  ( ph  ->  G  C_  (  <_  i^i  ( RR  X.  RR ) ) )
55 fss 5730 . . . . . . . . . 10  |-  ( ( f : NN --> G  /\  G  C_  (  <_  i^i  ( RR  X.  RR ) ) )  -> 
f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
5653, 54, 55syl2anr 478 . . . . . . . . 9  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
57 fss 5730 . . . . . . . . . . . . . . 15  |-  ( ( f : NN --> G  /\  G  C_  ran  F )  ->  f : NN --> ran  F )
5853, 13, 57syl2anr 478 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  f : NN --> ran  F )
59 simpl 457 . . . . . . . . . . . . . 14  |-  ( ( a  e.  NN  /\  b  e.  NN )  ->  a  e.  NN )
60 ffvelrn 6010 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ran  F  /\  a  e.  NN )  ->  ( f `  a )  e.  ran  F )
6158, 59, 60syl2an 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( f `  a )  e.  ran  F )
62 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( a  e.  NN  /\  b  e.  NN )  ->  b  e.  NN )
63 ffvelrn 6010 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ran  F  /\  b  e.  NN )  ->  ( f `  b )  e.  ran  F )
6458, 62, 63syl2an 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( f `  b )  e.  ran  F )
651dyaddisj 21733 . . . . . . . . . . . . 13  |-  ( ( ( f `  a
)  e.  ran  F  /\  ( f `  b
)  e.  ran  F
)  ->  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  ( f `
 b ) )  \/  ( [,] `  (
f `  b )
)  C_  ( [,] `  ( f `  a
) )  \/  (
( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) )
6661, 64, 65syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  ( f `
 b ) )  \/  ( [,] `  (
f `  b )
)  C_  ( [,] `  ( f `  a
) )  \/  (
( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) )
6753adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  f : NN --> G )
68 ffvelrn 6010 . . . . . . . . . . . . . . . . 17  |-  ( ( f : NN --> G  /\  b  e.  NN )  ->  ( f `  b
)  e.  G )
6967, 62, 68syl2an 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( f `  b )  e.  G
)
7012, 69sseldi 3495 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( f `  b )  e.  A
)
71 ffvelrn 6010 . . . . . . . . . . . . . . . . 17  |-  ( ( f : NN --> G  /\  a  e.  NN )  ->  ( f `  a
)  e.  G )
7267, 59, 71syl2an 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( f `  a )  e.  G
)
73 fveq2 5857 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( f `  a )  ->  ( [,] `  z )  =  ( [,] `  (
f `  a )
) )
7473sseq1d 3524 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( f `  a )  ->  (
( [,] `  z
)  C_  ( [,] `  w )  <->  ( [,] `  ( f `  a
) )  C_  ( [,] `  w ) ) )
75 eqeq1 2464 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( f `  a )  ->  (
z  =  w  <->  ( f `  a )  =  w ) )
7674, 75imbi12d 320 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( f `  a )  ->  (
( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  w )  ->  ( f `  a )  =  w ) ) )
7776ralbidv 2896 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( f `  a )  ->  ( A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  A. w  e.  A  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  w )  ->  ( f `  a )  =  w ) ) )
7877, 2elrab2 3256 . . . . . . . . . . . . . . . . 17  |-  ( ( f `  a )  e.  G  <->  ( (
f `  a )  e.  A  /\  A. w  e.  A  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  w )  ->  ( f `  a )  =  w ) ) )
7978simprbi 464 . . . . . . . . . . . . . . . 16  |-  ( ( f `  a )  e.  G  ->  A. w  e.  A  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  w )  ->  ( f `  a )  =  w ) )
8072, 79syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  A. w  e.  A  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  w )  ->  ( f `  a )  =  w ) )
81 fveq2 5857 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( f `  b )  ->  ( [,] `  w )  =  ( [,] `  (
f `  b )
) )
8281sseq2d 3525 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  b )  ->  (
( [,] `  (
f `  a )
)  C_  ( [,] `  w )  <->  ( [,] `  ( f `  a
) )  C_  ( [,] `  ( f `  b ) ) ) )
83 eqeq2 2475 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  b )  ->  (
( f `  a
)  =  w  <->  ( f `  a )  =  ( f `  b ) ) )
8482, 83imbi12d 320 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( f `  b )  ->  (
( ( [,] `  (
f `  a )
)  C_  ( [,] `  w )  ->  (
f `  a )  =  w )  <->  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  ( f `
 b ) )  ->  ( f `  a )  =  ( f `  b ) ) ) )
8584rspcv 3203 . . . . . . . . . . . . . . 15  |-  ( ( f `  b )  e.  A  ->  ( A. w  e.  A  ( ( [,] `  (
f `  a )
)  C_  ( [,] `  w )  ->  (
f `  a )  =  w )  ->  (
( [,] `  (
f `  a )
)  C_  ( [,] `  ( f `  b
) )  ->  (
f `  a )  =  ( f `  b ) ) ) )
8670, 80, 85sylc 60 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  ( f `
 b ) )  ->  ( f `  a )  =  ( f `  b ) ) )
87 f1of1 5806 . . . . . . . . . . . . . . . . 17  |-  ( f : NN -1-1-onto-> G  ->  f : NN
-1-1-> G )
8887adantl 466 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  f : NN -1-1-> G )
89 f1fveq 6149 . . . . . . . . . . . . . . . 16  |-  ( ( f : NN -1-1-> G  /\  ( a  e.  NN  /\  b  e.  NN ) )  ->  ( (
f `  a )  =  ( f `  b )  <->  a  =  b ) )
9088, 89sylan 471 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( (
f `  a )  =  ( f `  b )  <->  a  =  b ) )
91 orc 385 . . . . . . . . . . . . . . 15  |-  ( a  =  b  ->  (
a  =  b  \/  ( ( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) )
9290, 91syl6bi 228 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( (
f `  a )  =  ( f `  b )  ->  (
a  =  b  \/  ( ( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) ) )
9386, 92syld 44 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  ( f `
 b ) )  ->  ( a  =  b  \/  ( ( (,) `  ( f `
 a ) )  i^i  ( (,) `  (
f `  b )
) )  =  (/) ) ) )
9412, 72sseldi 3495 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( f `  a )  e.  A
)
95 fveq2 5857 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( f `  b )  ->  ( [,] `  z )  =  ( [,] `  (
f `  b )
) )
9695sseq1d 3524 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( f `  b )  ->  (
( [,] `  z
)  C_  ( [,] `  w )  <->  ( [,] `  ( f `  b
) )  C_  ( [,] `  w ) ) )
97 eqeq1 2464 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( f `  b )  ->  (
z  =  w  <->  ( f `  b )  =  w ) )
9896, 97imbi12d 320 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( f `  b )  ->  (
( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  w )  ->  ( f `  b )  =  w ) ) )
9998ralbidv 2896 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( f `  b )  ->  ( A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  A. w  e.  A  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  w )  ->  ( f `  b )  =  w ) ) )
10099, 2elrab2 3256 . . . . . . . . . . . . . . . . 17  |-  ( ( f `  b )  e.  G  <->  ( (
f `  b )  e.  A  /\  A. w  e.  A  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  w )  ->  ( f `  b )  =  w ) ) )
101100simprbi 464 . . . . . . . . . . . . . . . 16  |-  ( ( f `  b )  e.  G  ->  A. w  e.  A  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  w )  ->  ( f `  b )  =  w ) )
10269, 101syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  A. w  e.  A  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  w )  ->  ( f `  b )  =  w ) )
103 fveq2 5857 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( f `  a )  ->  ( [,] `  w )  =  ( [,] `  (
f `  a )
) )
104103sseq2d 3525 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  a )  ->  (
( [,] `  (
f `  b )
)  C_  ( [,] `  w )  <->  ( [,] `  ( f `  b
) )  C_  ( [,] `  ( f `  a ) ) ) )
105 eqeq2 2475 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( f `  a )  ->  (
( f `  b
)  =  w  <->  ( f `  b )  =  ( f `  a ) ) )
106 eqcom 2469 . . . . . . . . . . . . . . . . . 18  |-  ( ( f `  b )  =  ( f `  a )  <->  ( f `  a )  =  ( f `  b ) )
107105, 106syl6bb 261 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  a )  ->  (
( f `  b
)  =  w  <->  ( f `  a )  =  ( f `  b ) ) )
108104, 107imbi12d 320 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( f `  a )  ->  (
( ( [,] `  (
f `  b )
)  C_  ( [,] `  w )  ->  (
f `  b )  =  w )  <->  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  ( f `
 a ) )  ->  ( f `  a )  =  ( f `  b ) ) ) )
109108rspcv 3203 . . . . . . . . . . . . . . 15  |-  ( ( f `  a )  e.  A  ->  ( A. w  e.  A  ( ( [,] `  (
f `  b )
)  C_  ( [,] `  w )  ->  (
f `  b )  =  w )  ->  (
( [,] `  (
f `  b )
)  C_  ( [,] `  ( f `  a
) )  ->  (
f `  a )  =  ( f `  b ) ) ) )
11094, 102, 109sylc 60 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  ( f `
 a ) )  ->  ( f `  a )  =  ( f `  b ) ) )
111110, 92syld 44 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  ( f `
 a ) )  ->  ( a  =  b  \/  ( ( (,) `  ( f `
 a ) )  i^i  ( (,) `  (
f `  b )
) )  =  (/) ) ) )
112 olc 384 . . . . . . . . . . . . . 14  |-  ( ( ( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/)  ->  ( a  =  b  \/  ( ( (,) `  ( f `
 a ) )  i^i  ( (,) `  (
f `  b )
) )  =  (/) ) )
113112a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( (
( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/)  ->  ( a  =  b  \/  ( ( (,) `  ( f `
 a ) )  i^i  ( (,) `  (
f `  b )
) )  =  (/) ) ) )
11493, 111, 1133jaod 1287 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( (
( [,] `  (
f `  a )
)  C_  ( [,] `  ( f `  b
) )  \/  ( [,] `  ( f `  b ) )  C_  ( [,] `  ( f `
 a ) )  \/  ( ( (,) `  ( f `  a
) )  i^i  ( (,) `  ( f `  b ) ) )  =  (/) )  ->  (
a  =  b  \/  ( ( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) ) )
11566, 114mpd 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( a  =  b  \/  (
( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) )
116115ralrimivva 2878 . . . . . . . . . 10  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  A. a  e.  NN  A. b  e.  NN  ( a  =  b  \/  ( ( (,) `  ( f `
 a ) )  i^i  ( (,) `  (
f `  b )
) )  =  (/) ) )
117 fveq2 5857 . . . . . . . . . . . 12  |-  ( a  =  b  ->  (
f `  a )  =  ( f `  b ) )
118117fveq2d 5861 . . . . . . . . . . 11  |-  ( a  =  b  ->  ( (,) `  ( f `  a ) )  =  ( (,) `  (
f `  b )
) )
119118disjor 4424 . . . . . . . . . 10  |-  (Disj  a  e.  NN  ( (,) `  (
f `  a )
)  <->  A. a  e.  NN  A. b  e.  NN  (
a  =  b  \/  ( ( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) )
120116, 119sylibr 212 . . . . . . . . 9  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  -> Disj  a  e.  NN  ( (,) `  (
f `  a )
) )
121 eqid 2460 . . . . . . . . 9  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)  =  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)
12256, 120, 121uniiccmbl 21727 . . . . . . . 8  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  U. ran  ( [,]  o.  f )  e.  dom  vol )
12352, 122eqeltrrd 2549 . . . . . . 7  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  U. ( [,] " G )  e. 
dom  vol )
124123ex 434 . . . . . 6  |-  ( ph  ->  ( f : NN -1-1-onto-> G  ->  U. ( [,] " G
)  e.  dom  vol ) )
125124exlimdv 1695 . . . . 5  |-  ( ph  ->  ( E. f  f : NN -1-1-onto-> G  ->  U. ( [,] " G )  e. 
dom  vol ) )
12644, 125syl5 32 . . . 4  |-  ( ph  ->  ( G  ~~  om  ->  U. ( [,] " G
)  e.  dom  vol ) )
127126imp 429 . . 3  |-  ( (
ph  /\  G  ~~  om )  ->  U. ( [,] " G )  e. 
dom  vol )
128 reex 9572 . . . . . . . . 9  |-  RR  e.  _V
129128, 128xpex 6704 . . . . . . . 8  |-  ( RR 
X.  RR )  e. 
_V
130129inex2 4582 . . . . . . 7  |-  (  <_  i^i  ( RR  X.  RR ) )  e.  _V
131130, 16ssexi 4585 . . . . . 6  |-  ran  F  e.  _V
132 ssdomg 7551 . . . . . 6  |-  ( ran 
F  e.  _V  ->  ( G  C_  ran  F  ->  G  ~<_  ran  F )
)
133131, 13, 132mpsyl 63 . . . . 5  |-  ( ph  ->  G  ~<_  ran  F )
134 omelon 8052 . . . . . . . 8  |-  om  e.  On
135 znnen 13796 . . . . . . . . . . . 12  |-  ZZ  ~~  NN
136135, 39entri 7559 . . . . . . . . . . 11  |-  ZZ  ~~  om
137 nn0ennn 12045 . . . . . . . . . . . 12  |-  NN0  ~~  NN
138137, 39entri 7559 . . . . . . . . . . 11  |-  NN0  ~~  om
139 xpen 7670 . . . . . . . . . . 11  |-  ( ( ZZ  ~~  om  /\  NN0  ~~  om )  ->  ( ZZ  X.  NN0 )  ~~  ( om  X.  om )
)
140136, 138, 139mp2an 672 . . . . . . . . . 10  |-  ( ZZ 
X.  NN0 )  ~~  ( om  X.  om )
141 xpomen 8382 . . . . . . . . . 10  |-  ( om 
X.  om )  ~~  om
142140, 141entri 7559 . . . . . . . . 9  |-  ( ZZ 
X.  NN0 )  ~~  om
143142ensymi 7555 . . . . . . . 8  |-  om  ~~  ( ZZ  X.  NN0 )
144 isnumi 8316 . . . . . . . 8  |-  ( ( om  e.  On  /\  om 
~~  ( ZZ  X.  NN0 ) )  ->  ( ZZ  X.  NN0 )  e. 
dom  card )
145134, 143, 144mp2an 672 . . . . . . 7  |-  ( ZZ 
X.  NN0 )  e.  dom  card
146 ffn 5722 . . . . . . . . 9  |-  ( F : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  F  Fn  ( ZZ  X.  NN0 ) )
14714, 146ax-mp 5 . . . . . . . 8  |-  F  Fn  ( ZZ  X.  NN0 )
148 dffn4 5792 . . . . . . . 8  |-  ( F  Fn  ( ZZ  X.  NN0 )  <->  F : ( ZZ 
X.  NN0 ) -onto-> ran  F
)
149147, 148mpbi 208 . . . . . . 7  |-  F :
( ZZ  X.  NN0 ) -onto-> ran  F
150 fodomnum 8427 . . . . . . 7  |-  ( ( ZZ  X.  NN0 )  e.  dom  card  ->  ( F : ( ZZ  X.  NN0 ) -onto-> ran  F  ->  ran  F  ~<_  ( ZZ  X.  NN0 ) ) )
151145, 149, 150mp2 9 . . . . . 6  |-  ran  F  ~<_  ( ZZ  X.  NN0 )
152 domentr 7564 . . . . . 6  |-  ( ( ran  F  ~<_  ( ZZ 
X.  NN0 )  /\  ( ZZ  X.  NN0 )  ~~  om )  ->  ran  F  ~<_  om )
153151, 142, 152mp2an 672 . . . . 5  |-  ran  F  ~<_  om
154 domtr 7558 . . . . 5  |-  ( ( G  ~<_  ran  F  /\  ran  F  ~<_  om )  ->  G  ~<_  om )
155133, 153, 154sylancl 662 . . . 4  |-  ( ph  ->  G  ~<_  om )
156 brdom2 7535 . . . 4  |-  ( G  ~<_  om  <->  ( G  ~<  om  \/  G  ~~  om ) )
157155, 156sylib 196 . . 3  |-  ( ph  ->  ( G  ~<  om  \/  G  ~~  om ) )
15838, 127, 157mpjaodan 784 . 2  |-  ( ph  ->  U. ( [,] " G
)  e.  dom  vol )
1594, 158eqeltrd 2548 1  |-  ( ph  ->  U. ( [,] " A
)  e.  dom  vol )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 967    = wceq 1374   E.wex 1591    e. wcel 1762   A.wral 2807   {crab 2811   _Vcvv 3106    i^i cin 3468    C_ wss 3469   (/)c0 3778   ~Pcpw 4003   <.cop 4026   U.cuni 4238   U_ciun 4318  Disj wdisj 4410   class class class wbr 4440   Oncon0 4871    X. cxp 4990   dom cdm 4992   ran crn 4993   "cima 4995    o. ccom 4996   Fun wfun 5573    Fn wfn 5574   -->wf 5575   -1-1->wf1 5576   -onto->wfo 5577   -1-1-onto->wf1o 5578   ` cfv 5579  (class class class)co 6275    |-> cmpt2 6277   omcom 6671   1stc1st 6772   2ndc2nd 6773    ~~ cen 7503    ~<_ cdom 7504    ~< csdm 7505   Fincfn 7506   cardccrd 8305   RRcr 9480   1c1 9482    + caddc 9484   RR*cxr 9616    <_ cle 9618    - cmin 9794    / cdiv 10195   NNcn 10525   2c2 10574   NN0cn0 10784   ZZcz 10853   (,)cioo 11518   [,]cicc 11521    seqcseq 12063   ^cexp 12122   abscabs 13017   volcvol 21603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-disj 4411  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-omul 7125  df-er 7301  df-map 7412  df-pm 7413  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fi 7860  df-sup 7890  df-oi 7924  df-card 8309  df-acn 8312  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-n0 10785  df-z 10854  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-ioo 11522  df-ico 11524  df-icc 11525  df-fz 11662  df-fzo 11782  df-fl 11886  df-seq 12064  df-exp 12123  df-hash 12361  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-clim 13260  df-rlim 13261  df-sum 13458  df-rest 14667  df-topgen 14688  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-top 19159  df-bases 19161  df-topon 19162  df-cmp 19646  df-ovol 21604  df-vol 21605
This theorem is referenced by:  opnmbllem  21738
  Copyright terms: Public domain W3C validator