MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmbl Unicode version

Theorem dyadmbl 19445
Description: Any union of dyadic rational intervals is measurable. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
dyadmbl.2  |-  G  =  { z  e.  A  |  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) }
dyadmbl.3  |-  ( ph  ->  A  C_  ran  F )
Assertion
Ref Expression
dyadmbl  |-  ( ph  ->  U. ( [,] " A
)  e.  dom  vol )
Distinct variable groups:    x, y    z, w, ph    x, w, y, A, z    z, G   
w, F, x, y, z
Allowed substitution hints:    ph( x, y)    G( x, y, w)

Proof of Theorem dyadmbl
Dummy variables  f 
a  b  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dyadmbl.1 . . 3  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
2 dyadmbl.2 . . 3  |-  G  =  { z  e.  A  |  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) }
3 dyadmbl.3 . . 3  |-  ( ph  ->  A  C_  ran  F )
41, 2, 3dyadmbllem 19444 . 2  |-  ( ph  ->  U. ( [,] " A
)  =  U. ( [,] " G ) )
5 isfinite 7563 . . . 4  |-  ( G  e.  Fin  <->  G  ~<  om )
6 iccf 10959 . . . . . 6  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*
7 ffun 5552 . . . . . 6  |-  ( [,]
: ( RR*  X.  RR* )
--> ~P RR*  ->  Fun  [,] )
8 funiunfv 5954 . . . . . 6  |-  ( Fun 
[,]  ->  U_ n  e.  G  ( [,] `  n )  =  U. ( [,] " G ) )
96, 7, 8mp2b 10 . . . . 5  |-  U_ n  e.  G  ( [,] `  n )  =  U. ( [,] " G )
10 simpr 448 . . . . . 6  |-  ( (
ph  /\  G  e.  Fin )  ->  G  e. 
Fin )
11 ssrab2 3388 . . . . . . . . . . . . . . . 16  |-  { z  e.  A  |  A. w  e.  A  (
( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) }  C_  A
122, 11eqsstri 3338 . . . . . . . . . . . . . . 15  |-  G  C_  A
1312, 3syl5ss 3319 . . . . . . . . . . . . . 14  |-  ( ph  ->  G  C_  ran  F )
141dyadf 19436 . . . . . . . . . . . . . . . 16  |-  F :
( ZZ  X.  NN0 )
--> (  <_  i^i  ( RR  X.  RR ) )
15 frn 5556 . . . . . . . . . . . . . . . 16  |-  ( F : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  F 
C_  (  <_  i^i  ( RR  X.  RR ) ) )
1614, 15ax-mp 8 . . . . . . . . . . . . . . 15  |-  ran  F  C_  (  <_  i^i  ( RR  X.  RR ) )
17 inss2 3522 . . . . . . . . . . . . . . 15  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
1816, 17sstri 3317 . . . . . . . . . . . . . 14  |-  ran  F  C_  ( RR  X.  RR )
1913, 18syl6ss 3320 . . . . . . . . . . . . 13  |-  ( ph  ->  G  C_  ( RR  X.  RR ) )
2019adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  G  e.  Fin )  ->  G  C_  ( RR  X.  RR ) )
2120sselda 3308 . . . . . . . . . . 11  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  n  e.  ( RR  X.  RR ) )
22 1st2nd2 6345 . . . . . . . . . . 11  |-  ( n  e.  ( RR  X.  RR )  ->  n  = 
<. ( 1st `  n
) ,  ( 2nd `  n ) >. )
2321, 22syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >. )
2423fveq2d 5691 . . . . . . . . 9  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  ( [,] `  n )  =  ( [,] `  <. ( 1st `  n ) ,  ( 2nd `  n
) >. ) )
25 df-ov 6043 . . . . . . . . 9  |-  ( ( 1st `  n ) [,] ( 2nd `  n
) )  =  ( [,] `  <. ( 1st `  n ) ,  ( 2nd `  n
) >. )
2624, 25syl6eqr 2454 . . . . . . . 8  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  ( [,] `  n )  =  ( ( 1st `  n
) [,] ( 2nd `  n ) ) )
27 xp1st 6335 . . . . . . . . . 10  |-  ( n  e.  ( RR  X.  RR )  ->  ( 1st `  n )  e.  RR )
2821, 27syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  ( 1st `  n )  e.  RR )
29 xp2nd 6336 . . . . . . . . . 10  |-  ( n  e.  ( RR  X.  RR )  ->  ( 2nd `  n )  e.  RR )
3021, 29syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  ( 2nd `  n )  e.  RR )
31 iccmbl 19413 . . . . . . . . 9  |-  ( ( ( 1st `  n
)  e.  RR  /\  ( 2nd `  n )  e.  RR )  -> 
( ( 1st `  n
) [,] ( 2nd `  n ) )  e. 
dom  vol )
3228, 30, 31syl2anc 643 . . . . . . . 8  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  (
( 1st `  n
) [,] ( 2nd `  n ) )  e. 
dom  vol )
3326, 32eqeltrd 2478 . . . . . . 7  |-  ( ( ( ph  /\  G  e.  Fin )  /\  n  e.  G )  ->  ( [,] `  n )  e. 
dom  vol )
3433ralrimiva 2749 . . . . . 6  |-  ( (
ph  /\  G  e.  Fin )  ->  A. n  e.  G  ( [,] `  n )  e.  dom  vol )
35 finiunmbl 19391 . . . . . 6  |-  ( ( G  e.  Fin  /\  A. n  e.  G  ( [,] `  n )  e.  dom  vol )  ->  U_ n  e.  G  ( [,] `  n )  e.  dom  vol )
3610, 34, 35syl2anc 643 . . . . 5  |-  ( (
ph  /\  G  e.  Fin )  ->  U_ n  e.  G  ( [,] `  n )  e.  dom  vol )
379, 36syl5eqelr 2489 . . . 4  |-  ( (
ph  /\  G  e.  Fin )  ->  U. ( [,] " G )  e. 
dom  vol )
385, 37sylan2br 463 . . 3  |-  ( (
ph  /\  G  ~<  om )  ->  U. ( [,] " G )  e. 
dom  vol )
39 nnenom 11274 . . . . . . 7  |-  NN  ~~  om
40 ensym 7115 . . . . . . 7  |-  ( G 
~~  om  ->  om  ~~  G )
41 entr 7118 . . . . . . 7  |-  ( ( NN  ~~  om  /\  om 
~~  G )  ->  NN  ~~  G )
4239, 40, 41sylancr 645 . . . . . 6  |-  ( G 
~~  om  ->  NN  ~~  G )
43 bren 7076 . . . . . 6  |-  ( NN 
~~  G  <->  E. f 
f : NN -1-1-onto-> G )
4442, 43sylib 189 . . . . 5  |-  ( G 
~~  om  ->  E. f 
f : NN -1-1-onto-> G )
45 rnco2 5336 . . . . . . . . . 10  |-  ran  ( [,]  o.  f )  =  ( [,] " ran  f )
46 f1ofo 5640 . . . . . . . . . . . . 13  |-  ( f : NN -1-1-onto-> G  ->  f : NN -onto-> G )
4746adantl 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  f : NN -onto-> G )
48 forn 5615 . . . . . . . . . . . 12  |-  ( f : NN -onto-> G  ->  ran  f  =  G
)
4947, 48syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  ran  f  =  G )
5049imaeq2d 5162 . . . . . . . . . 10  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  ( [,] " ran  f )  =  ( [,] " G
) )
5145, 50syl5eq 2448 . . . . . . . . 9  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  ran  ( [,]  o.  f )  =  ( [,] " G
) )
5251unieqd 3986 . . . . . . . 8  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  U. ran  ( [,]  o.  f )  =  U. ( [,] " G ) )
53 f1of 5633 . . . . . . . . . 10  |-  ( f : NN -1-1-onto-> G  ->  f : NN
--> G )
5413, 16syl6ss 3320 . . . . . . . . . 10  |-  ( ph  ->  G  C_  (  <_  i^i  ( RR  X.  RR ) ) )
55 fss 5558 . . . . . . . . . 10  |-  ( ( f : NN --> G  /\  G  C_  (  <_  i^i  ( RR  X.  RR ) ) )  -> 
f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
5653, 54, 55syl2anr 465 . . . . . . . . 9  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
57 fss 5558 . . . . . . . . . . . . . . 15  |-  ( ( f : NN --> G  /\  G  C_  ran  F )  ->  f : NN --> ran  F )
5853, 13, 57syl2anr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  f : NN --> ran  F )
59 simpl 444 . . . . . . . . . . . . . 14  |-  ( ( a  e.  NN  /\  b  e.  NN )  ->  a  e.  NN )
60 ffvelrn 5827 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ran  F  /\  a  e.  NN )  ->  ( f `  a )  e.  ran  F )
6158, 59, 60syl2an 464 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( f `  a )  e.  ran  F )
62 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( a  e.  NN  /\  b  e.  NN )  ->  b  e.  NN )
63 ffvelrn 5827 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ran  F  /\  b  e.  NN )  ->  ( f `  b )  e.  ran  F )
6458, 62, 63syl2an 464 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( f `  b )  e.  ran  F )
651dyaddisj 19441 . . . . . . . . . . . . 13  |-  ( ( ( f `  a
)  e.  ran  F  /\  ( f `  b
)  e.  ran  F
)  ->  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  ( f `
 b ) )  \/  ( [,] `  (
f `  b )
)  C_  ( [,] `  ( f `  a
) )  \/  (
( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) )
6661, 64, 65syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  ( f `
 b ) )  \/  ( [,] `  (
f `  b )
)  C_  ( [,] `  ( f `  a
) )  \/  (
( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) )
6753adantl 453 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  f : NN --> G )
68 ffvelrn 5827 . . . . . . . . . . . . . . . . 17  |-  ( ( f : NN --> G  /\  b  e.  NN )  ->  ( f `  b
)  e.  G )
6967, 62, 68syl2an 464 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( f `  b )  e.  G
)
7012, 69sseldi 3306 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( f `  b )  e.  A
)
71 ffvelrn 5827 . . . . . . . . . . . . . . . . 17  |-  ( ( f : NN --> G  /\  a  e.  NN )  ->  ( f `  a
)  e.  G )
7267, 59, 71syl2an 464 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( f `  a )  e.  G
)
73 fveq2 5687 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( f `  a )  ->  ( [,] `  z )  =  ( [,] `  (
f `  a )
) )
7473sseq1d 3335 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( f `  a )  ->  (
( [,] `  z
)  C_  ( [,] `  w )  <->  ( [,] `  ( f `  a
) )  C_  ( [,] `  w ) ) )
75 eqeq1 2410 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( f `  a )  ->  (
z  =  w  <->  ( f `  a )  =  w ) )
7674, 75imbi12d 312 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( f `  a )  ->  (
( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  w )  ->  ( f `  a )  =  w ) ) )
7776ralbidv 2686 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( f `  a )  ->  ( A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  A. w  e.  A  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  w )  ->  ( f `  a )  =  w ) ) )
7877, 2elrab2 3054 . . . . . . . . . . . . . . . . 17  |-  ( ( f `  a )  e.  G  <->  ( (
f `  a )  e.  A  /\  A. w  e.  A  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  w )  ->  ( f `  a )  =  w ) ) )
7978simprbi 451 . . . . . . . . . . . . . . . 16  |-  ( ( f `  a )  e.  G  ->  A. w  e.  A  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  w )  ->  ( f `  a )  =  w ) )
8072, 79syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  A. w  e.  A  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  w )  ->  ( f `  a )  =  w ) )
81 fveq2 5687 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( f `  b )  ->  ( [,] `  w )  =  ( [,] `  (
f `  b )
) )
8281sseq2d 3336 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  b )  ->  (
( [,] `  (
f `  a )
)  C_  ( [,] `  w )  <->  ( [,] `  ( f `  a
) )  C_  ( [,] `  ( f `  b ) ) ) )
83 eqeq2 2413 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  b )  ->  (
( f `  a
)  =  w  <->  ( f `  a )  =  ( f `  b ) ) )
8482, 83imbi12d 312 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( f `  b )  ->  (
( ( [,] `  (
f `  a )
)  C_  ( [,] `  w )  ->  (
f `  a )  =  w )  <->  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  ( f `
 b ) )  ->  ( f `  a )  =  ( f `  b ) ) ) )
8584rspcv 3008 . . . . . . . . . . . . . . 15  |-  ( ( f `  b )  e.  A  ->  ( A. w  e.  A  ( ( [,] `  (
f `  a )
)  C_  ( [,] `  w )  ->  (
f `  a )  =  w )  ->  (
( [,] `  (
f `  a )
)  C_  ( [,] `  ( f `  b
) )  ->  (
f `  a )  =  ( f `  b ) ) ) )
8670, 80, 85sylc 58 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  ( f `
 b ) )  ->  ( f `  a )  =  ( f `  b ) ) )
87 f1of1 5632 . . . . . . . . . . . . . . . . 17  |-  ( f : NN -1-1-onto-> G  ->  f : NN
-1-1-> G )
8887adantl 453 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  f : NN -1-1-> G )
89 f1fveq 5967 . . . . . . . . . . . . . . . 16  |-  ( ( f : NN -1-1-> G  /\  ( a  e.  NN  /\  b  e.  NN ) )  ->  ( (
f `  a )  =  ( f `  b )  <->  a  =  b ) )
9088, 89sylan 458 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( (
f `  a )  =  ( f `  b )  <->  a  =  b ) )
91 orc 375 . . . . . . . . . . . . . . 15  |-  ( a  =  b  ->  (
a  =  b  \/  ( ( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) )
9290, 91syl6bi 220 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( (
f `  a )  =  ( f `  b )  ->  (
a  =  b  \/  ( ( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) ) )
9386, 92syld 42 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( ( [,] `  ( f `  a ) )  C_  ( [,] `  ( f `
 b ) )  ->  ( a  =  b  \/  ( ( (,) `  ( f `
 a ) )  i^i  ( (,) `  (
f `  b )
) )  =  (/) ) ) )
9412, 72sseldi 3306 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( f `  a )  e.  A
)
95 fveq2 5687 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( f `  b )  ->  ( [,] `  z )  =  ( [,] `  (
f `  b )
) )
9695sseq1d 3335 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( f `  b )  ->  (
( [,] `  z
)  C_  ( [,] `  w )  <->  ( [,] `  ( f `  b
) )  C_  ( [,] `  w ) ) )
97 eqeq1 2410 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( f `  b )  ->  (
z  =  w  <->  ( f `  b )  =  w ) )
9896, 97imbi12d 312 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( f `  b )  ->  (
( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  w )  ->  ( f `  b )  =  w ) ) )
9998ralbidv 2686 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( f `  b )  ->  ( A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  A. w  e.  A  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  w )  ->  ( f `  b )  =  w ) ) )
10099, 2elrab2 3054 . . . . . . . . . . . . . . . . 17  |-  ( ( f `  b )  e.  G  <->  ( (
f `  b )  e.  A  /\  A. w  e.  A  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  w )  ->  ( f `  b )  =  w ) ) )
101100simprbi 451 . . . . . . . . . . . . . . . 16  |-  ( ( f `  b )  e.  G  ->  A. w  e.  A  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  w )  ->  ( f `  b )  =  w ) )
10269, 101syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  A. w  e.  A  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  w )  ->  ( f `  b )  =  w ) )
103 fveq2 5687 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( f `  a )  ->  ( [,] `  w )  =  ( [,] `  (
f `  a )
) )
104103sseq2d 3336 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  a )  ->  (
( [,] `  (
f `  b )
)  C_  ( [,] `  w )  <->  ( [,] `  ( f `  b
) )  C_  ( [,] `  ( f `  a ) ) ) )
105 eqeq2 2413 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( f `  a )  ->  (
( f `  b
)  =  w  <->  ( f `  b )  =  ( f `  a ) ) )
106 eqcom 2406 . . . . . . . . . . . . . . . . . 18  |-  ( ( f `  b )  =  ( f `  a )  <->  ( f `  a )  =  ( f `  b ) )
107105, 106syl6bb 253 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  a )  ->  (
( f `  b
)  =  w  <->  ( f `  a )  =  ( f `  b ) ) )
108104, 107imbi12d 312 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( f `  a )  ->  (
( ( [,] `  (
f `  b )
)  C_  ( [,] `  w )  ->  (
f `  b )  =  w )  <->  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  ( f `
 a ) )  ->  ( f `  a )  =  ( f `  b ) ) ) )
109108rspcv 3008 . . . . . . . . . . . . . . 15  |-  ( ( f `  a )  e.  A  ->  ( A. w  e.  A  ( ( [,] `  (
f `  b )
)  C_  ( [,] `  w )  ->  (
f `  b )  =  w )  ->  (
( [,] `  (
f `  b )
)  C_  ( [,] `  ( f `  a
) )  ->  (
f `  a )  =  ( f `  b ) ) ) )
11094, 102, 109sylc 58 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  ( f `
 a ) )  ->  ( f `  a )  =  ( f `  b ) ) )
111110, 92syld 42 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( ( [,] `  ( f `  b ) )  C_  ( [,] `  ( f `
 a ) )  ->  ( a  =  b  \/  ( ( (,) `  ( f `
 a ) )  i^i  ( (,) `  (
f `  b )
) )  =  (/) ) ) )
112 olc 374 . . . . . . . . . . . . . 14  |-  ( ( ( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/)  ->  ( a  =  b  \/  ( ( (,) `  ( f `
 a ) )  i^i  ( (,) `  (
f `  b )
) )  =  (/) ) )
113112a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( (
( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/)  ->  ( a  =  b  \/  ( ( (,) `  ( f `
 a ) )  i^i  ( (,) `  (
f `  b )
) )  =  (/) ) ) )
11493, 111, 1133jaod 1248 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( (
( [,] `  (
f `  a )
)  C_  ( [,] `  ( f `  b
) )  \/  ( [,] `  ( f `  b ) )  C_  ( [,] `  ( f `
 a ) )  \/  ( ( (,) `  ( f `  a
) )  i^i  ( (,) `  ( f `  b ) ) )  =  (/) )  ->  (
a  =  b  \/  ( ( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) ) )
11566, 114mpd 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f : NN -1-1-onto-> G )  /\  (
a  e.  NN  /\  b  e.  NN )
)  ->  ( a  =  b  \/  (
( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) )
116115ralrimivva 2758 . . . . . . . . . 10  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  A. a  e.  NN  A. b  e.  NN  ( a  =  b  \/  ( ( (,) `  ( f `
 a ) )  i^i  ( (,) `  (
f `  b )
) )  =  (/) ) )
117 fveq2 5687 . . . . . . . . . . . 12  |-  ( a  =  b  ->  (
f `  a )  =  ( f `  b ) )
118117fveq2d 5691 . . . . . . . . . . 11  |-  ( a  =  b  ->  ( (,) `  ( f `  a ) )  =  ( (,) `  (
f `  b )
) )
119118disjor 4156 . . . . . . . . . 10  |-  (Disj  a  e.  NN ( (,) `  (
f `  a )
)  <->  A. a  e.  NN  A. b  e.  NN  (
a  =  b  \/  ( ( (,) `  (
f `  a )
)  i^i  ( (,) `  ( f `  b
) ) )  =  (/) ) )
120116, 119sylibr 204 . . . . . . . . 9  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  -> Disj  a  e.  NN ( (,) `  (
f `  a )
) )
121 eqid 2404 . . . . . . . . 9  |-  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)  =  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)
12256, 120, 121uniiccmbl 19435 . . . . . . . 8  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  U. ran  ( [,]  o.  f )  e.  dom  vol )
12352, 122eqeltrrd 2479 . . . . . . 7  |-  ( (
ph  /\  f : NN
-1-1-onto-> G )  ->  U. ( [,] " G )  e. 
dom  vol )
124123ex 424 . . . . . 6  |-  ( ph  ->  ( f : NN -1-1-onto-> G  ->  U. ( [,] " G
)  e.  dom  vol ) )
125124exlimdv 1643 . . . . 5  |-  ( ph  ->  ( E. f  f : NN -1-1-onto-> G  ->  U. ( [,] " G )  e. 
dom  vol ) )
12644, 125syl5 30 . . . 4  |-  ( ph  ->  ( G  ~~  om  ->  U. ( [,] " G
)  e.  dom  vol ) )
127126imp 419 . . 3  |-  ( (
ph  /\  G  ~~  om )  ->  U. ( [,] " G )  e. 
dom  vol )
128 reex 9037 . . . . . . . . 9  |-  RR  e.  _V
129128, 128xpex 4949 . . . . . . . 8  |-  ( RR 
X.  RR )  e. 
_V
130129inex2 4305 . . . . . . 7  |-  (  <_  i^i  ( RR  X.  RR ) )  e.  _V
131130, 16ssexi 4308 . . . . . 6  |-  ran  F  e.  _V
132 ssdomg 7112 . . . . . 6  |-  ( ran 
F  e.  _V  ->  ( G  C_  ran  F  ->  G  ~<_  ran  F )
)
133131, 13, 132mpsyl 61 . . . . 5  |-  ( ph  ->  G  ~<_  ran  F )
134 omelon 7557 . . . . . . . 8  |-  om  e.  On
135 znnen 12767 . . . . . . . . . . . 12  |-  ZZ  ~~  NN
136135, 39entri 7120 . . . . . . . . . . 11  |-  ZZ  ~~  om
137 nn0ennn 11273 . . . . . . . . . . . 12  |-  NN0  ~~  NN
138137, 39entri 7120 . . . . . . . . . . 11  |-  NN0  ~~  om
139 xpen 7229 . . . . . . . . . . 11  |-  ( ( ZZ  ~~  om  /\  NN0  ~~  om )  ->  ( ZZ  X.  NN0 )  ~~  ( om  X.  om )
)
140136, 138, 139mp2an 654 . . . . . . . . . 10  |-  ( ZZ 
X.  NN0 )  ~~  ( om  X.  om )
141 xpomen 7853 . . . . . . . . . 10  |-  ( om 
X.  om )  ~~  om
142140, 141entri 7120 . . . . . . . . 9  |-  ( ZZ 
X.  NN0 )  ~~  om
143142ensymi 7116 . . . . . . . 8  |-  om  ~~  ( ZZ  X.  NN0 )
144 isnumi 7789 . . . . . . . 8  |-  ( ( om  e.  On  /\  om 
~~  ( ZZ  X.  NN0 ) )  ->  ( ZZ  X.  NN0 )  e. 
dom  card )
145134, 143, 144mp2an 654 . . . . . . 7  |-  ( ZZ 
X.  NN0 )  e.  dom  card
146 ffn 5550 . . . . . . . . 9  |-  ( F : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  F  Fn  ( ZZ  X.  NN0 ) )
14714, 146ax-mp 8 . . . . . . . 8  |-  F  Fn  ( ZZ  X.  NN0 )
148 dffn4 5618 . . . . . . . 8  |-  ( F  Fn  ( ZZ  X.  NN0 )  <->  F : ( ZZ 
X.  NN0 ) -onto-> ran  F
)
149147, 148mpbi 200 . . . . . . 7  |-  F :
( ZZ  X.  NN0 ) -onto-> ran  F
150 fodomnum 7894 . . . . . . 7  |-  ( ( ZZ  X.  NN0 )  e.  dom  card  ->  ( F : ( ZZ  X.  NN0 ) -onto-> ran  F  ->  ran  F  ~<_  ( ZZ  X.  NN0 ) ) )
151145, 149, 150mp2 9 . . . . . 6  |-  ran  F  ~<_  ( ZZ  X.  NN0 )
152 domentr 7125 . . . . . 6  |-  ( ( ran  F  ~<_  ( ZZ 
X.  NN0 )  /\  ( ZZ  X.  NN0 )  ~~  om )  ->  ran  F  ~<_  om )
153151, 142, 152mp2an 654 . . . . 5  |-  ran  F  ~<_  om
154 domtr 7119 . . . . 5  |-  ( ( G  ~<_  ran  F  /\  ran  F  ~<_  om )  ->  G  ~<_  om )
155133, 153, 154sylancl 644 . . . 4  |-  ( ph  ->  G  ~<_  om )
156 brdom2 7096 . . . 4  |-  ( G  ~<_  om  <->  ( G  ~<  om  \/  G  ~~  om ) )
157155, 156sylib 189 . . 3  |-  ( ph  ->  ( G  ~<  om  \/  G  ~~  om ) )
15838, 127, 157mpjaodan 762 . 2  |-  ( ph  ->  U. ( [,] " G
)  e.  dom  vol )
1594, 158eqeltrd 2478 1  |-  ( ph  ->  U. ( [,] " A
)  e.  dom  vol )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    \/ w3o 935   E.wex 1547    = wceq 1649    e. wcel 1721   A.wral 2666   {crab 2670   _Vcvv 2916    i^i cin 3279    C_ wss 3280   (/)c0 3588   ~Pcpw 3759   <.cop 3777   U.cuni 3975   U_ciun 4053  Disj wdisj 4142   class class class wbr 4172   Oncon0 4541   omcom 4804    X. cxp 4835   dom cdm 4837   ran crn 4838   "cima 4840    o. ccom 4841   Fun wfun 5407    Fn wfn 5408   -->wf 5409   -1-1->wf1 5410   -onto->wfo 5411   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   1stc1st 6306   2ndc2nd 6307    ~~ cen 7065    ~<_ cdom 7066    ~< csdm 7067   Fincfn 7068   cardccrd 7778   RRcr 8945   1c1 8947    + caddc 8949   RR*cxr 9075    <_ cle 9077    - cmin 9247    / cdiv 9633   NNcn 9956   2c2 10005   NN0cn0 10177   ZZcz 10238   (,)cioo 10872   [,]cicc 10875    seq cseq 11278   ^cexp 11337   abscabs 11994   volcvol 19313
This theorem is referenced by:  opnmbllem  19446
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-rlim 12238  df-sum 12435  df-rest 13605  df-topgen 13622  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-top 16918  df-bases 16920  df-topon 16921  df-cmp 17404  df-ovol 19314  df-vol 19315
  Copyright terms: Public domain W3C validator