MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmax Structured version   Unicode version

Theorem dyadmax 22176
Description: Any nonempty set of dyadic rational intervals has a maximal element. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
Assertion
Ref Expression
dyadmax  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z )  C_  ( [,] `  w )  ->  z  =  w ) )
Distinct variable groups:    x, y    z, w, x, y, A   
w, F, x, y, z

Proof of Theorem dyadmax
Dummy variables  c 
d  a  b  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltweuz 12057 . . . . 5  |-  <  We  ( ZZ>= `  0 )
21a1i 11 . . . 4  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  <  We  ( ZZ>= `  0 )
)
3 nn0ex 10797 . . . . . 6  |-  NN0  e.  _V
43rabex 4588 . . . . 5  |-  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  e.  _V
54a1i 11 . . . 4  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  e.  _V )
6 ssrab2 3571 . . . . . 6  |-  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  C_  NN0
7 nn0uz 11116 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
86, 7sseqtri 3521 . . . . 5  |-  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  C_  ( ZZ>= ` 
0 )
98a1i 11 . . . 4  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  C_  ( ZZ>= ` 
0 ) )
10 id 22 . . . . . . 7  |-  ( A  =/=  (/)  ->  A  =/=  (/) )
11 dyadmbl.1 . . . . . . . . . . . 12  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
1211dyadf 22169 . . . . . . . . . . 11  |-  F :
( ZZ  X.  NN0 )
--> (  <_  i^i  ( RR  X.  RR ) )
13 ffn 5713 . . . . . . . . . . 11  |-  ( F : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  F  Fn  ( ZZ  X.  NN0 ) )
14 ovelrn 6424 . . . . . . . . . . 11  |-  ( F  Fn  ( ZZ  X.  NN0 )  ->  ( z  e.  ran  F  <->  E. a  e.  ZZ  E. n  e. 
NN0  z  =  ( a F n ) ) )
1512, 13, 14mp2b 10 . . . . . . . . . 10  |-  ( z  e.  ran  F  <->  E. a  e.  ZZ  E. n  e. 
NN0  z  =  ( a F n ) )
16 rexcom 3016 . . . . . . . . . 10  |-  ( E. a  e.  ZZ  E. n  e.  NN0  z  =  ( a F n )  <->  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )
1715, 16sylbb 197 . . . . . . . . 9  |-  ( z  e.  ran  F  ->  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )
1817rgen 2814 . . . . . . . 8  |-  A. z  e.  ran  F E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n )
19 ssralv 3550 . . . . . . . 8  |-  ( A 
C_  ran  F  ->  ( A. z  e.  ran  F E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n )  ->  A. z  e.  A  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) ) )
2018, 19mpi 17 . . . . . . 7  |-  ( A 
C_  ran  F  ->  A. z  e.  A  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )
21 r19.2z 3906 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  A. z  e.  A  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )  ->  E. z  e.  A  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )
2210, 20, 21syl2anr 476 . . . . . 6  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  E. z  e.  A  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )
23 rexcom 3016 . . . . . 6  |-  ( E. z  e.  A  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n )  <->  E. n  e.  NN0  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) )
2422, 23sylib 196 . . . . 5  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  E. n  e.  NN0  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) )
25 rabn0 3804 . . . . 5  |-  ( { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  =/=  (/)  <->  E. n  e.  NN0  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) )
2624, 25sylibr 212 . . . 4  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  =/=  (/) )
27 wereu 4864 . . . 4  |-  ( (  <  We  ( ZZ>= ` 
0 )  /\  ( { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  e.  _V  /\  {
n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } 
C_  ( ZZ>= `  0
)  /\  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  =/=  (/) ) )  ->  E! c  e. 
{ n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } A. d  e.  {
n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c
)
282, 5, 9, 26, 27syl13anc 1228 . . 3  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  E! c  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } A. d  e. 
{ n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c
)
29 reurex 3071 . . 3  |-  ( E! c  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } A. d  e. 
{ n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c  ->  E. c  e.  {
n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } A. d  e.  {
n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c
)
3028, 29syl 16 . 2  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  E. c  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } A. d  e.  {
n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c
)
31 oveq2 6278 . . . . . . 7  |-  ( n  =  c  ->  (
a F n )  =  ( a F c ) )
3231eqeq2d 2468 . . . . . 6  |-  ( n  =  c  ->  (
z  =  ( a F n )  <->  z  =  ( a F c ) ) )
33322rexbidv 2972 . . . . 5  |-  ( n  =  c  ->  ( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n )  <->  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c ) ) )
3433elrab 3254 . . . 4  |-  ( c  e.  { n  e. 
NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  <->  ( c  e. 
NN0  /\  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c ) ) )
35 eqeq1 2458 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  =  ( a F n )  <->  w  =  ( a F n ) ) )
36 oveq1 6277 . . . . . . . . . . 11  |-  ( a  =  b  ->  (
a F n )  =  ( b F n ) )
3736eqeq2d 2468 . . . . . . . . . 10  |-  ( a  =  b  ->  (
w  =  ( a F n )  <->  w  =  ( b F n ) ) )
3835, 37cbvrex2v 3090 . . . . . . . . 9  |-  ( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n )  <->  E. w  e.  A  E. b  e.  ZZ  w  =  ( b F n ) )
39 oveq2 6278 . . . . . . . . . . 11  |-  ( n  =  d  ->  (
b F n )  =  ( b F d ) )
4039eqeq2d 2468 . . . . . . . . . 10  |-  ( n  =  d  ->  (
w  =  ( b F n )  <->  w  =  ( b F d ) ) )
41402rexbidv 2972 . . . . . . . . 9  |-  ( n  =  d  ->  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F n )  <->  E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d ) ) )
4238, 41syl5bb 257 . . . . . . . 8  |-  ( n  =  d  ->  ( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n )  <->  E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d ) ) )
4342ralrab 3258 . . . . . . 7  |-  ( A. d  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  < 
c  <->  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )
44 r19.23v 2934 . . . . . . . . . . . . . . . . 17  |-  ( A. w  e.  A  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  <-> 
( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )
4544ralbii 2885 . . . . . . . . . . . . . . . 16  |-  ( A. d  e.  NN0  A. w  e.  A  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  <->  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )
46 ralcom 3015 . . . . . . . . . . . . . . . 16  |-  ( A. d  e.  NN0  A. w  e.  A  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  <->  A. w  e.  A  A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )
4745, 46bitr3i 251 . . . . . . . . . . . . . . 15  |-  ( A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  <->  A. w  e.  A  A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )
48 simplll 757 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  ->  A  C_  ran  F )
4948sselda 3489 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  w  e.  ran  F )
50 ovelrn 6424 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  Fn  ( ZZ  X.  NN0 )  ->  ( w  e.  ran  F  <->  E. b  e.  ZZ  E. d  e. 
NN0  w  =  ( b F d ) ) )
5112, 13, 50mp2b 10 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  ran  F  <->  E. b  e.  ZZ  E. d  e. 
NN0  w  =  ( b F d ) )
5249, 51sylib 196 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  E. b  e.  ZZ  E. d  e. 
NN0  w  =  ( b F d ) )
53 rexcom 3016 . . . . . . . . . . . . . . . . . . 19  |-  ( E. b  e.  ZZ  E. d  e.  NN0  w  =  ( b F d )  <->  E. d  e.  NN0  E. b  e.  ZZ  w  =  ( b F d ) )
54 r19.29 2989 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. d  e. 
NN0  E. b  e.  ZZ  w  =  ( b F d ) )  ->  E. d  e.  NN0  ( ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. b  e.  ZZ  w  =  ( b F d ) ) )
5554expcom 433 . . . . . . . . . . . . . . . . . . 19  |-  ( E. d  e.  NN0  E. b  e.  ZZ  w  =  ( b F d )  ->  ( A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  E. d  e.  NN0  ( ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. b  e.  ZZ  w  =  ( b F d ) ) ) )
5653, 55sylbi 195 . . . . . . . . . . . . . . . . . 18  |-  ( E. b  e.  ZZ  E. d  e.  NN0  w  =  ( b F d )  ->  ( A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  E. d  e.  NN0  ( ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. b  e.  ZZ  w  =  ( b F d ) ) ) )
5752, 56syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  ( A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  E. d  e.  NN0  ( ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. b  e.  ZZ  w  =  ( b F d ) ) ) )
58 simplrr 760 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  a  e.  ZZ )
5958ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  a  e.  ZZ )
60 simplrr 760 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  b  e.  ZZ )
61 simp-5r 768 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  c  e.  NN0 )
62 simplrl 759 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  d  e.  NN0 )
63 simprl 754 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  -.  d  <  c )
64 simprr 755 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) )
6511, 59, 60, 61, 62, 63, 64dyadmaxlem 22175 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  (
a  =  b  /\  c  =  d )
)
66 oveq12 6279 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( a  =  b  /\  c  =  d )  ->  ( a F c )  =  ( b F d ) )
6765, 66syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  (
a F c )  =  ( b F d ) )
6867exp32 603 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  ->  ( -.  d  <  c  ->  (
( [,] `  (
a F c ) )  C_  ( [,] `  ( b F d ) )  ->  (
a F c )  =  ( b F d ) ) ) )
69 fveq2 5848 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( w  =  ( b F d )  ->  ( [,] `  w )  =  ( [,] `  (
b F d ) ) )
7069sseq2d 3517 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( b F d )  ->  (
( [,] `  (
a F c ) )  C_  ( [,] `  w )  <->  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )
71 eqeq2 2469 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( b F d )  ->  (
( a F c )  =  w  <->  ( a F c )  =  ( b F d ) ) )
7270, 71imbi12d 318 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  ( b F d )  ->  (
( ( [,] `  (
a F c ) )  C_  ( [,] `  w )  ->  (
a F c )  =  w )  <->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) )  ->  ( a F c )  =  ( b F d ) ) ) )
7372imbi2d 314 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  ( b F d )  ->  (
( -.  d  < 
c  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) )  <->  ( -.  d  <  c  ->  (
( [,] `  (
a F c ) )  C_  ( [,] `  ( b F d ) )  ->  (
a F c )  =  ( b F d ) ) ) ) )
7468, 73syl5ibrcom 222 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  ->  ( w  =  ( b F d )  ->  ( -.  d  <  c  -> 
( ( [,] `  (
a F c ) )  C_  ( [,] `  w )  ->  (
a F c )  =  w ) ) ) )
7574anassrs 646 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  d  e.  NN0 )  /\  b  e.  ZZ )  ->  (
w  =  ( b F d )  -> 
( -.  d  < 
c  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) ) ) )
7675rexlimdva 2946 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  /\  d  e.  NN0 )  ->  ( E. b  e.  ZZ  w  =  ( b F d )  -> 
( -.  d  < 
c  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) ) ) )
7776a2d 26 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  /\  d  e.  NN0 )  ->  (
( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  ( E. b  e.  ZZ  w  =  ( b F d )  ->  (
( [,] `  (
a F c ) )  C_  ( [,] `  w )  ->  (
a F c )  =  w ) ) ) )
7877impd 429 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  /\  d  e.  NN0 )  ->  (
( ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. b  e.  ZZ  w  =  ( b F d ) )  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) ) )
7978rexlimdva 2946 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  ( E. d  e.  NN0  ( ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. b  e.  ZZ  w  =  ( b F d ) )  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) ) )
8057, 79syld 44 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  ( A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  -> 
( a F c )  =  w ) ) )
8180ralimdva 2862 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  ->  ( A. w  e.  A  A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  A. w  e.  A  ( ( [,] `  (
a F c ) )  C_  ( [,] `  w )  ->  (
a F c )  =  w ) ) )
8247, 81syl5bi 217 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  ->  ( A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  A. w  e.  A  ( ( [,] `  (
a F c ) )  C_  ( [,] `  w )  ->  (
a F c )  =  w ) ) )
8382imp 427 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )  ->  A. w  e.  A  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) )
8483an32s 802 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  ->  A. w  e.  A  ( ( [,] `  (
a F c ) )  C_  ( [,] `  w )  ->  (
a F c )  =  w ) )
85 fveq2 5848 . . . . . . . . . . . . . . 15  |-  ( z  =  ( a F c )  ->  ( [,] `  z )  =  ( [,] `  (
a F c ) ) )
8685sseq1d 3516 . . . . . . . . . . . . . 14  |-  ( z  =  ( a F c )  ->  (
( [,] `  z
)  C_  ( [,] `  w )  <->  ( [,] `  ( a F c ) )  C_  ( [,] `  w ) ) )
87 eqeq1 2458 . . . . . . . . . . . . . 14  |-  ( z  =  ( a F c )  ->  (
z  =  w  <->  ( a F c )  =  w ) )
8886, 87imbi12d 318 . . . . . . . . . . . . 13  |-  ( z  =  ( a F c )  ->  (
( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) ) )
8988ralbidv 2893 . . . . . . . . . . . 12  |-  ( z  =  ( a F c )  ->  ( A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  A. w  e.  A  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) ) )
9084, 89syl5ibrcom 222 . . . . . . . . . . 11  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  -> 
( z  =  ( a F c )  ->  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) ) )
9190anassrs 646 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )  /\  z  e.  A
)  /\  a  e.  ZZ )  ->  ( z  =  ( a F c )  ->  A. w  e.  A  ( ( [,] `  z )  C_  ( [,] `  w )  ->  z  =  w ) ) )
9291rexlimdva 2946 . . . . . . . . 9  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )  /\  z  e.  A
)  ->  ( E. a  e.  ZZ  z  =  ( a F c )  ->  A. w  e.  A  ( ( [,] `  z )  C_  ( [,] `  w )  ->  z  =  w ) ) )
9392reximdva 2929 . . . . . . . 8  |-  ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )  ->  ( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c )  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) ) )
9493ex 432 . . . . . . 7  |-  ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  -> 
( A. d  e. 
NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  ( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c )  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z )  C_  ( [,] `  w )  ->  z  =  w ) ) ) )
9543, 94syl5bi 217 . . . . . 6  |-  ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  -> 
( A. d  e. 
{ n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c  ->  ( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c )  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) ) ) )
9695com23 78 . . . . 5  |-  ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  -> 
( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c )  ->  ( A. d  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) ) ) )
9796expimpd 601 . . . 4  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  (
( c  e.  NN0  /\ 
E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c ) )  ->  ( A. d  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) ) ) )
9834, 97syl5bi 217 . . 3  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  (
c  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  ->  ( A. d  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  < 
c  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z )  C_  ( [,] `  w )  ->  z  =  w ) ) ) )
9998rexlimdv 2944 . 2  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  ( E. c  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } A. d  e. 
{ n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) ) )
10030, 99mpd 15 1  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z )  C_  ( [,] `  w )  ->  z  =  w ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805   E!wreu 2806   {crab 2808   _Vcvv 3106    i^i cin 3460    C_ wss 3461   (/)c0 3783   <.cop 4022   class class class wbr 4439    We wwe 4826    X. cxp 4986   ran crn 4989    Fn wfn 5565   -->wf 5566   ` cfv 5570  (class class class)co 6270    |-> cmpt2 6272   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    < clt 9617    <_ cle 9618    / cdiv 10202   2c2 10581   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11082   [,]cicc 11535   ^cexp 12151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-seq 12093  df-exp 12152  df-hash 12391  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-clim 13396  df-sum 13594  df-rest 14915  df-topgen 14936  df-psmet 18609  df-xmet 18610  df-met 18611  df-bl 18612  df-mopn 18613  df-top 19569  df-bases 19571  df-topon 19572  df-cmp 20057  df-ovol 22045
This theorem is referenced by:  dyadmbllem  22177
  Copyright terms: Public domain W3C validator