Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocuni Structured version   Unicode version

Theorem dya2iocuni 26835
Description: Every open set of  ( RR 
X.  RR ) is a union of closed-below open-above dyadic rational rectangular subsets of  ( RR  X.  RR ). This union must be a countable union by dya2iocct 26832. (Contributed by Thierry Arnoux, 18-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0  |-  J  =  ( topGen `  ran  (,) )
dya2ioc.1  |-  I  =  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
dya2ioc.2  |-  R  =  ( u  e.  ran  I ,  v  e.  ran  I  |->  ( u  X.  v ) )
Assertion
Ref Expression
dya2iocuni  |-  ( A  e.  ( J  tX  J )  ->  E. c  e.  ~P  ran  R U. c  =  A )
Distinct variable groups:    x, n    x, I    v, u, I, x    u, c, v, A    R, c
Allowed substitution hints:    A( x, n)    R( x, v, u, n)    I( n, c)    J( x, v, u, n, c)

Proof of Theorem dya2iocuni
Dummy variables  m  p  b  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3538 . . . 4  |-  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  C_  ran  R
2 sxbrsiga.0 . . . . . . . 8  |-  J  =  ( topGen `  ran  (,) )
3 dya2ioc.1 . . . . . . . 8  |-  I  =  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
4 dya2ioc.2 . . . . . . . 8  |-  R  =  ( u  e.  ran  I ,  v  e.  ran  I  |->  ( u  X.  v ) )
52, 3, 4dya2iocrfn 26831 . . . . . . 7  |-  R  Fn  ( ran  I  X.  ran  I )
6 zex 10759 . . . . . . . . . . 11  |-  ZZ  e.  _V
76, 6mpt2ex 6753 . . . . . . . . . 10  |-  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  /  ( 2 ^ n ) ) [,) ( ( x  + 
1 )  /  (
2 ^ n ) ) ) )  e. 
_V
83, 7eqeltri 2535 . . . . . . . . 9  |-  I  e. 
_V
98rnex 6615 . . . . . . . 8  |-  ran  I  e.  _V
109, 9xpex 6611 . . . . . . 7  |-  ( ran  I  X.  ran  I
)  e.  _V
11 fnex 6046 . . . . . . 7  |-  ( ( R  Fn  ( ran  I  X.  ran  I
)  /\  ( ran  I  X.  ran  I )  e.  _V )  ->  R  e.  _V )
125, 10, 11mp2an 672 . . . . . 6  |-  R  e. 
_V
1312rnex 6615 . . . . 5  |-  ran  R  e.  _V
1413elpw2 4557 . . . 4  |-  ( { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  e.  ~P ran  R  <->  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) }  C_  ran  R )
151, 14mpbir 209 . . 3  |-  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  e.  ~P ran  R
1615a1i 11 . 2  |-  ( A  e.  ( J  tX  J )  ->  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  e.  ~P ran  R )
17 rex0 3752 . . . . . . . . . . 11  |-  -.  E. z  e.  (/)  ( z  e.  b  /\  b  C_  A )
18 rexeq 3017 . . . . . . . . . . 11  |-  ( A  =  (/)  ->  ( E. z  e.  A  ( z  e.  b  /\  b  C_  A )  <->  E. z  e.  (/)  ( z  e.  b  /\  b  C_  A ) ) )
1917, 18mtbiri 303 . . . . . . . . . 10  |-  ( A  =  (/)  ->  -.  E. z  e.  A  (
z  e.  b  /\  b  C_  A ) )
2019ralrimivw 2826 . . . . . . . . 9  |-  ( A  =  (/)  ->  A. b  e.  ran  R  -.  E. z  e.  A  (
z  e.  b  /\  b  C_  A ) )
21 rabeq0 3760 . . . . . . . . 9  |-  ( { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  =  (/)  <->  A. b  e.  ran  R  -.  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) )
2220, 21sylibr 212 . . . . . . . 8  |-  ( A  =  (/)  ->  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  =  (/) )
2322unieqd 4202 . . . . . . 7  |-  ( A  =  (/)  ->  U. {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  =  U. (/) )
24 uni0 4219 . . . . . . 7  |-  U. (/)  =  (/)
2523, 24syl6eq 2508 . . . . . 6  |-  ( A  =  (/)  ->  U. {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  =  (/) )
26 0ss 3767 . . . . . 6  |-  (/)  C_  A
2725, 26syl6eqss 3507 . . . . 5  |-  ( A  =  (/)  ->  U. {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  C_  A
)
28 elequ2 1763 . . . . . . . . . . 11  |-  ( b  =  p  ->  (
z  e.  b  <->  z  e.  p ) )
29 sseq1 3478 . . . . . . . . . . 11  |-  ( b  =  p  ->  (
b  C_  A  <->  p  C_  A
) )
3028, 29anbi12d 710 . . . . . . . . . 10  |-  ( b  =  p  ->  (
( z  e.  b  /\  b  C_  A
)  <->  ( z  e.  p  /\  p  C_  A ) ) )
3130rexbidv 2855 . . . . . . . . 9  |-  ( b  =  p  ->  ( E. z  e.  A  ( z  e.  b  /\  b  C_  A
)  <->  E. z  e.  A  ( z  e.  p  /\  p  C_  A ) ) )
3231elrab 3217 . . . . . . . 8  |-  ( p  e.  { b  e. 
ran  R  |  E. z  e.  A  (
z  e.  b  /\  b  C_  A ) }  <-> 
( p  e.  ran  R  /\  E. z  e.  A  ( z  e.  p  /\  p  C_  A ) ) )
33 simpr 461 . . . . . . . . . . 11  |-  ( ( z  e.  p  /\  p  C_  A )  ->  p  C_  A )
3433reximi 2922 . . . . . . . . . 10  |-  ( E. z  e.  A  ( z  e.  p  /\  p  C_  A )  ->  E. z  e.  A  p  C_  A )
35 r19.9rzv 3875 . . . . . . . . . 10  |-  ( A  =/=  (/)  ->  ( p  C_  A  <->  E. z  e.  A  p  C_  A ) )
3634, 35syl5ibr 221 . . . . . . . . 9  |-  ( A  =/=  (/)  ->  ( E. z  e.  A  (
z  e.  p  /\  p  C_  A )  ->  p  C_  A ) )
3736adantld 467 . . . . . . . 8  |-  ( A  =/=  (/)  ->  ( (
p  e.  ran  R  /\  E. z  e.  A  ( z  e.  p  /\  p  C_  A ) )  ->  p  C_  A
) )
3832, 37syl5bi 217 . . . . . . 7  |-  ( A  =/=  (/)  ->  ( p  e.  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) }  ->  p 
C_  A ) )
3938ralrimiv 2823 . . . . . 6  |-  ( A  =/=  (/)  ->  A. p  e.  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) } p  C_  A )
40 unissb 4224 . . . . . 6  |-  ( U. { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) }  C_  A 
<-> 
A. p  e.  {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) } p  C_  A )
4139, 40sylibr 212 . . . . 5  |-  ( A  =/=  (/)  ->  U. { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  C_  A
)
4227, 41pm2.61ine 2761 . . . 4  |-  U. {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  C_  A
4342a1i 11 . . 3  |-  ( A  e.  ( J  tX  J )  ->  U. {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  C_  A
)
442, 3, 4dya2iocnei 26834 . . . . . . 7  |-  ( ( A  e.  ( J 
tX  J )  /\  m  e.  A )  ->  E. p  e.  ran  R ( m  e.  p  /\  p  C_  A ) )
45 simpl 457 . . . . . . . . . . 11  |-  ( ( p  e.  ran  R  /\  ( m  e.  p  /\  p  C_  A ) )  ->  p  e.  ran  R )
46 ssel2 3452 . . . . . . . . . . . . . 14  |-  ( ( p  C_  A  /\  m  e.  p )  ->  m  e.  A )
4746ancoms 453 . . . . . . . . . . . . 13  |-  ( ( m  e.  p  /\  p  C_  A )  ->  m  e.  A )
4847adantl 466 . . . . . . . . . . . 12  |-  ( ( p  e.  ran  R  /\  ( m  e.  p  /\  p  C_  A ) )  ->  m  e.  A )
49 simpr 461 . . . . . . . . . . . 12  |-  ( ( p  e.  ran  R  /\  ( m  e.  p  /\  p  C_  A ) )  ->  ( m  e.  p  /\  p  C_  A ) )
50 elequ1 1761 . . . . . . . . . . . . . 14  |-  ( z  =  m  ->  (
z  e.  p  <->  m  e.  p ) )
5150anbi1d 704 . . . . . . . . . . . . 13  |-  ( z  =  m  ->  (
( z  e.  p  /\  p  C_  A )  <-> 
( m  e.  p  /\  p  C_  A ) ) )
5251rspcev 3172 . . . . . . . . . . . 12  |-  ( ( m  e.  A  /\  ( m  e.  p  /\  p  C_  A ) )  ->  E. z  e.  A  ( z  e.  p  /\  p  C_  A ) )
5348, 49, 52syl2anc 661 . . . . . . . . . . 11  |-  ( ( p  e.  ran  R  /\  ( m  e.  p  /\  p  C_  A ) )  ->  E. z  e.  A  ( z  e.  p  /\  p  C_  A ) )
5445, 53jca 532 . . . . . . . . . 10  |-  ( ( p  e.  ran  R  /\  ( m  e.  p  /\  p  C_  A ) )  ->  ( p  e.  ran  R  /\  E. z  e.  A  (
z  e.  p  /\  p  C_  A ) ) )
5554, 32sylibr 212 . . . . . . . . 9  |-  ( ( p  e.  ran  R  /\  ( m  e.  p  /\  p  C_  A ) )  ->  p  e.  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) } )
56 simprl 755 . . . . . . . . 9  |-  ( ( p  e.  ran  R  /\  ( m  e.  p  /\  p  C_  A ) )  ->  m  e.  p )
5755, 56jca 532 . . . . . . . 8  |-  ( ( p  e.  ran  R  /\  ( m  e.  p  /\  p  C_  A ) )  ->  ( p  e.  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) }  /\  m  e.  p )
)
5857reximi2 2921 . . . . . . 7  |-  ( E. p  e.  ran  R
( m  e.  p  /\  p  C_  A )  ->  E. p  e.  {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) } m  e.  p )
5944, 58syl 16 . . . . . 6  |-  ( ( A  e.  ( J 
tX  J )  /\  m  e.  A )  ->  E. p  e.  {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) } m  e.  p )
60 eluni2 4196 . . . . . 6  |-  ( m  e.  U. { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  <->  E. p  e.  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) } m  e.  p )
6159, 60sylibr 212 . . . . 5  |-  ( ( A  e.  ( J 
tX  J )  /\  m  e.  A )  ->  m  e.  U. {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) } )
6261ex 434 . . . 4  |-  ( A  e.  ( J  tX  J )  ->  (
m  e.  A  ->  m  e.  U. { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) } ) )
6362ssrdv 3463 . . 3  |-  ( A  e.  ( J  tX  J )  ->  A  C_ 
U. { b  e. 
ran  R  |  E. z  e.  A  (
z  e.  b  /\  b  C_  A ) } )
6443, 63eqssd 3474 . 2  |-  ( A  e.  ( J  tX  J )  ->  U. {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  =  A )
65 unieq 4200 . . . 4  |-  ( c  =  { b  e. 
ran  R  |  E. z  e.  A  (
z  e.  b  /\  b  C_  A ) }  ->  U. c  =  U. { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) } )
6665eqeq1d 2453 . . 3  |-  ( c  =  { b  e. 
ran  R  |  E. z  e.  A  (
z  e.  b  /\  b  C_  A ) }  ->  ( U. c  =  A  <->  U. { b  e. 
ran  R  |  E. z  e.  A  (
z  e.  b  /\  b  C_  A ) }  =  A ) )
6766rspcev 3172 . 2  |-  ( ( { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) }  e.  ~P ran  R  /\  U. { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) }  =  A )  ->  E. c  e.  ~P  ran  R U. c  =  A )
6816, 64, 67syl2anc 661 1  |-  ( A  e.  ( J  tX  J )  ->  E. c  e.  ~P  ran  R U. c  =  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2644   A.wral 2795   E.wrex 2796   {crab 2799   _Vcvv 3071    C_ wss 3429   (/)c0 3738   ~Pcpw 3961   U.cuni 4192    X. cxp 4939   ran crn 4942    Fn wfn 5514   ` cfv 5519  (class class class)co 6193    |-> cmpt2 6195   1c1 9387    + caddc 9389    / cdiv 10097   2c2 10475   ZZcz 10750   (,)cioo 11404   [,)cico 11406   ^cexp 11975   topGenctg 14487    tX ctx 19258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-inf2 7951  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463  ax-pre-sup 9464  ax-addf 9465  ax-mulf 9466
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-iin 4275  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-se 4781  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-isom 5528  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-of 6423  df-om 6580  df-1st 6680  df-2nd 6681  df-supp 6794  df-recs 6935  df-rdg 6969  df-1o 7023  df-2o 7024  df-oadd 7027  df-er 7204  df-map 7319  df-pm 7320  df-ixp 7367  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-fsupp 7725  df-fi 7765  df-sup 7795  df-oi 7828  df-card 8213  df-cda 8441  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-div 10098  df-nn 10427  df-2 10484  df-3 10485  df-4 10486  df-5 10487  df-6 10488  df-7 10489  df-8 10490  df-9 10491  df-10 10492  df-n0 10684  df-z 10751  df-dec 10860  df-uz 10966  df-q 11058  df-rp 11096  df-xneg 11193  df-xadd 11194  df-xmul 11195  df-ioo 11408  df-ioc 11409  df-ico 11410  df-icc 11411  df-fz 11548  df-fzo 11659  df-fl 11752  df-mod 11819  df-seq 11917  df-exp 11976  df-fac 12162  df-bc 12189  df-hash 12214  df-shft 12667  df-cj 12699  df-re 12700  df-im 12701  df-sqr 12835  df-abs 12836  df-limsup 13060  df-clim 13077  df-rlim 13078  df-sum 13275  df-ef 13464  df-sin 13466  df-cos 13467  df-pi 13469  df-struct 14287  df-ndx 14288  df-slot 14289  df-base 14290  df-sets 14291  df-ress 14292  df-plusg 14362  df-mulr 14363  df-starv 14364  df-sca 14365  df-vsca 14366  df-ip 14367  df-tset 14368  df-ple 14369  df-ds 14371  df-unif 14372  df-hom 14373  df-cco 14374  df-rest 14472  df-topn 14473  df-0g 14491  df-gsum 14492  df-topgen 14493  df-pt 14494  df-prds 14497  df-xrs 14551  df-qtop 14556  df-imas 14557  df-xps 14559  df-mre 14635  df-mrc 14636  df-acs 14638  df-mnd 15526  df-submnd 15576  df-mulg 15659  df-cntz 15946  df-cmn 16392  df-psmet 17927  df-xmet 17928  df-met 17929  df-bl 17930  df-mopn 17931  df-fbas 17932  df-fg 17933  df-cnfld 17937  df-refld 18153  df-top 18628  df-bases 18630  df-topon 18631  df-topsp 18632  df-cld 18748  df-ntr 18749  df-cls 18750  df-nei 18827  df-lp 18865  df-perf 18866  df-cn 18956  df-cnp 18957  df-haus 19044  df-cmp 19115  df-tx 19260  df-hmeo 19453  df-fil 19544  df-fm 19636  df-flim 19637  df-flf 19638  df-fcls 19639  df-xms 20020  df-ms 20021  df-tms 20022  df-cncf 20579  df-cfil 20891  df-cmet 20893  df-cms 20971  df-limc 21467  df-dv 21468  df-log 22134  df-cxp 22135  df-logb 26588
This theorem is referenced by:  dya2iocucvr  26836  sxbrsigalem1  26837
  Copyright terms: Public domain W3C validator