Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocuni Structured version   Visualization version   Unicode version

Theorem dya2iocuni 29178
Description: Every open set of  ( RR 
X.  RR ) is a union of closed-below open-above dyadic rational rectangular subsets of  ( RR  X.  RR ). This union must be a countable union by dya2iocct 29175. (Contributed by Thierry Arnoux, 18-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0  |-  J  =  ( topGen `  ran  (,) )
dya2ioc.1  |-  I  =  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
dya2ioc.2  |-  R  =  ( u  e.  ran  I ,  v  e.  ran  I  |->  ( u  X.  v ) )
Assertion
Ref Expression
dya2iocuni  |-  ( A  e.  ( J  tX  J )  ->  E. c  e.  ~P  ran  R U. c  =  A )
Distinct variable groups:    x, n    x, I    v, u, I, x    u, c, v, A    R, c
Allowed substitution hints:    A( x, n)    R( x, v, u, n)    I( n, c)    J( x, v, u, n, c)

Proof of Theorem dya2iocuni
Dummy variables  m  p  b  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3500 . . . 4  |-  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  C_  ran  R
2 sxbrsiga.0 . . . . . . . 8  |-  J  =  ( topGen `  ran  (,) )
3 dya2ioc.1 . . . . . . . 8  |-  I  =  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
4 dya2ioc.2 . . . . . . . 8  |-  R  =  ( u  e.  ran  I ,  v  e.  ran  I  |->  ( u  X.  v ) )
52, 3, 4dya2iocrfn 29174 . . . . . . 7  |-  R  Fn  ( ran  I  X.  ran  I )
6 zex 10970 . . . . . . . . . . 11  |-  ZZ  e.  _V
76, 6mpt2ex 6889 . . . . . . . . . 10  |-  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  /  ( 2 ^ n ) ) [,) ( ( x  + 
1 )  /  (
2 ^ n ) ) ) )  e. 
_V
83, 7eqeltri 2545 . . . . . . . . 9  |-  I  e. 
_V
98rnex 6746 . . . . . . . 8  |-  ran  I  e.  _V
109, 9xpex 6614 . . . . . . 7  |-  ( ran  I  X.  ran  I
)  e.  _V
11 fnex 6148 . . . . . . 7  |-  ( ( R  Fn  ( ran  I  X.  ran  I
)  /\  ( ran  I  X.  ran  I )  e.  _V )  ->  R  e.  _V )
125, 10, 11mp2an 686 . . . . . 6  |-  R  e. 
_V
1312rnex 6746 . . . . 5  |-  ran  R  e.  _V
1413elpw2 4565 . . . 4  |-  ( { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  e.  ~P ran  R  <->  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) }  C_  ran  R )
151, 14mpbir 214 . . 3  |-  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  e.  ~P ran  R
1615a1i 11 . 2  |-  ( A  e.  ( J  tX  J )  ->  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  e.  ~P ran  R )
17 rex0 3737 . . . . . . . . . . 11  |-  -.  E. z  e.  (/)  ( z  e.  b  /\  b  C_  A )
18 rexeq 2974 . . . . . . . . . . 11  |-  ( A  =  (/)  ->  ( E. z  e.  A  ( z  e.  b  /\  b  C_  A )  <->  E. z  e.  (/)  ( z  e.  b  /\  b  C_  A ) ) )
1917, 18mtbiri 310 . . . . . . . . . 10  |-  ( A  =  (/)  ->  -.  E. z  e.  A  (
z  e.  b  /\  b  C_  A ) )
2019ralrimivw 2810 . . . . . . . . 9  |-  ( A  =  (/)  ->  A. b  e.  ran  R  -.  E. z  e.  A  (
z  e.  b  /\  b  C_  A ) )
21 rabeq0 3757 . . . . . . . . 9  |-  ( { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  =  (/)  <->  A. b  e.  ran  R  -.  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) )
2220, 21sylibr 217 . . . . . . . 8  |-  ( A  =  (/)  ->  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  =  (/) )
2322unieqd 4200 . . . . . . 7  |-  ( A  =  (/)  ->  U. {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  =  U. (/) )
24 uni0 4217 . . . . . . 7  |-  U. (/)  =  (/)
2523, 24syl6eq 2521 . . . . . 6  |-  ( A  =  (/)  ->  U. {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  =  (/) )
26 0ss 3766 . . . . . 6  |-  (/)  C_  A
2725, 26syl6eqss 3468 . . . . 5  |-  ( A  =  (/)  ->  U. {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  C_  A
)
28 elequ2 1918 . . . . . . . . . . 11  |-  ( b  =  p  ->  (
z  e.  b  <->  z  e.  p ) )
29 sseq1 3439 . . . . . . . . . . 11  |-  ( b  =  p  ->  (
b  C_  A  <->  p  C_  A
) )
3028, 29anbi12d 725 . . . . . . . . . 10  |-  ( b  =  p  ->  (
( z  e.  b  /\  b  C_  A
)  <->  ( z  e.  p  /\  p  C_  A ) ) )
3130rexbidv 2892 . . . . . . . . 9  |-  ( b  =  p  ->  ( E. z  e.  A  ( z  e.  b  /\  b  C_  A
)  <->  E. z  e.  A  ( z  e.  p  /\  p  C_  A ) ) )
3231elrab 3184 . . . . . . . 8  |-  ( p  e.  { b  e. 
ran  R  |  E. z  e.  A  (
z  e.  b  /\  b  C_  A ) }  <-> 
( p  e.  ran  R  /\  E. z  e.  A  ( z  e.  p  /\  p  C_  A ) ) )
33 simpr 468 . . . . . . . . . . 11  |-  ( ( z  e.  p  /\  p  C_  A )  ->  p  C_  A )
3433reximi 2852 . . . . . . . . . 10  |-  ( E. z  e.  A  ( z  e.  p  /\  p  C_  A )  ->  E. z  e.  A  p  C_  A )
35 r19.9rzv 3854 . . . . . . . . . 10  |-  ( A  =/=  (/)  ->  ( p  C_  A  <->  E. z  e.  A  p  C_  A ) )
3634, 35syl5ibr 229 . . . . . . . . 9  |-  ( A  =/=  (/)  ->  ( E. z  e.  A  (
z  e.  p  /\  p  C_  A )  ->  p  C_  A ) )
3736adantld 474 . . . . . . . 8  |-  ( A  =/=  (/)  ->  ( (
p  e.  ran  R  /\  E. z  e.  A  ( z  e.  p  /\  p  C_  A ) )  ->  p  C_  A
) )
3832, 37syl5bi 225 . . . . . . 7  |-  ( A  =/=  (/)  ->  ( p  e.  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) }  ->  p 
C_  A ) )
3938ralrimiv 2808 . . . . . 6  |-  ( A  =/=  (/)  ->  A. p  e.  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) } p  C_  A )
40 unissb 4221 . . . . . 6  |-  ( U. { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) }  C_  A 
<-> 
A. p  e.  {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) } p  C_  A )
4139, 40sylibr 217 . . . . 5  |-  ( A  =/=  (/)  ->  U. { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  C_  A
)
4227, 41pm2.61ine 2726 . . . 4  |-  U. {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  C_  A
4342a1i 11 . . 3  |-  ( A  e.  ( J  tX  J )  ->  U. {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  C_  A
)
442, 3, 4dya2iocnei 29177 . . . . . . 7  |-  ( ( A  e.  ( J 
tX  J )  /\  m  e.  A )  ->  E. p  e.  ran  R ( m  e.  p  /\  p  C_  A ) )
45 simpl 464 . . . . . . . . . . 11  |-  ( ( p  e.  ran  R  /\  ( m  e.  p  /\  p  C_  A ) )  ->  p  e.  ran  R )
46 ssel2 3413 . . . . . . . . . . . . . 14  |-  ( ( p  C_  A  /\  m  e.  p )  ->  m  e.  A )
4746ancoms 460 . . . . . . . . . . . . 13  |-  ( ( m  e.  p  /\  p  C_  A )  ->  m  e.  A )
4847adantl 473 . . . . . . . . . . . 12  |-  ( ( p  e.  ran  R  /\  ( m  e.  p  /\  p  C_  A ) )  ->  m  e.  A )
49 simpr 468 . . . . . . . . . . . 12  |-  ( ( p  e.  ran  R  /\  ( m  e.  p  /\  p  C_  A ) )  ->  ( m  e.  p  /\  p  C_  A ) )
50 elequ1 1911 . . . . . . . . . . . . . 14  |-  ( z  =  m  ->  (
z  e.  p  <->  m  e.  p ) )
5150anbi1d 719 . . . . . . . . . . . . 13  |-  ( z  =  m  ->  (
( z  e.  p  /\  p  C_  A )  <-> 
( m  e.  p  /\  p  C_  A ) ) )
5251rspcev 3136 . . . . . . . . . . . 12  |-  ( ( m  e.  A  /\  ( m  e.  p  /\  p  C_  A ) )  ->  E. z  e.  A  ( z  e.  p  /\  p  C_  A ) )
5348, 49, 52syl2anc 673 . . . . . . . . . . 11  |-  ( ( p  e.  ran  R  /\  ( m  e.  p  /\  p  C_  A ) )  ->  E. z  e.  A  ( z  e.  p  /\  p  C_  A ) )
5445, 53jca 541 . . . . . . . . . 10  |-  ( ( p  e.  ran  R  /\  ( m  e.  p  /\  p  C_  A ) )  ->  ( p  e.  ran  R  /\  E. z  e.  A  (
z  e.  p  /\  p  C_  A ) ) )
5554, 32sylibr 217 . . . . . . . . 9  |-  ( ( p  e.  ran  R  /\  ( m  e.  p  /\  p  C_  A ) )  ->  p  e.  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) } )
56 simprl 772 . . . . . . . . 9  |-  ( ( p  e.  ran  R  /\  ( m  e.  p  /\  p  C_  A ) )  ->  m  e.  p )
5755, 56jca 541 . . . . . . . 8  |-  ( ( p  e.  ran  R  /\  ( m  e.  p  /\  p  C_  A ) )  ->  ( p  e.  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) }  /\  m  e.  p )
)
5857reximi2 2851 . . . . . . 7  |-  ( E. p  e.  ran  R
( m  e.  p  /\  p  C_  A )  ->  E. p  e.  {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) } m  e.  p )
5944, 58syl 17 . . . . . 6  |-  ( ( A  e.  ( J 
tX  J )  /\  m  e.  A )  ->  E. p  e.  {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) } m  e.  p )
60 eluni2 4194 . . . . . 6  |-  ( m  e.  U. { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  <->  E. p  e.  { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) } m  e.  p )
6159, 60sylibr 217 . . . . 5  |-  ( ( A  e.  ( J 
tX  J )  /\  m  e.  A )  ->  m  e.  U. {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) } )
6261ex 441 . . . 4  |-  ( A  e.  ( J  tX  J )  ->  (
m  e.  A  ->  m  e.  U. { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) } ) )
6362ssrdv 3424 . . 3  |-  ( A  e.  ( J  tX  J )  ->  A  C_ 
U. { b  e. 
ran  R  |  E. z  e.  A  (
z  e.  b  /\  b  C_  A ) } )
6443, 63eqssd 3435 . 2  |-  ( A  e.  ( J  tX  J )  ->  U. {
b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A
) }  =  A )
65 unieq 4198 . . . 4  |-  ( c  =  { b  e. 
ran  R  |  E. z  e.  A  (
z  e.  b  /\  b  C_  A ) }  ->  U. c  =  U. { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) } )
6665eqeq1d 2473 . . 3  |-  ( c  =  { b  e. 
ran  R  |  E. z  e.  A  (
z  e.  b  /\  b  C_  A ) }  ->  ( U. c  =  A  <->  U. { b  e. 
ran  R  |  E. z  e.  A  (
z  e.  b  /\  b  C_  A ) }  =  A ) )
6766rspcev 3136 . 2  |-  ( ( { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) }  e.  ~P ran  R  /\  U. { b  e.  ran  R  |  E. z  e.  A  ( z  e.  b  /\  b  C_  A ) }  =  A )  ->  E. c  e.  ~P  ran  R U. c  =  A )
6816, 64, 67syl2anc 673 1  |-  ( A  e.  ( J  tX  J )  ->  E. c  e.  ~P  ran  R U. c  =  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   {crab 2760   _Vcvv 3031    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   U.cuni 4190    X. cxp 4837   ran crn 4840    Fn wfn 5584   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310   1c1 9558    + caddc 9560    / cdiv 10291   2c2 10681   ZZcz 10961   (,)cioo 11660   [,)cico 11662   ^cexp 12310   topGenctg 15414    tX ctx 20652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-sin 14200  df-cos 14201  df-pi 14203  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-refld 19250  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-cmp 20479  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-fcls 21034  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-cfil 22303  df-cmet 22305  df-cms 22381  df-limc 22900  df-dv 22901  df-log 23585  df-cxp 23586  df-logb 23781
This theorem is referenced by:  dya2iocucvr  29179  sxbrsigalem1  29180
  Copyright terms: Public domain W3C validator