Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocival Structured version   Unicode version

Theorem dya2iocival 27884
Description: The function  I returns closed-below open-above dyadic rational intervals covering the real line. This is the same construction as in dyadmbl 21744. (Contributed by Thierry Arnoux, 24-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0  |-  J  =  ( topGen `  ran  (,) )
dya2ioc.1  |-  I  =  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
Assertion
Ref Expression
dya2iocival  |-  ( ( N  e.  ZZ  /\  X  e.  ZZ )  ->  ( X I N )  =  ( ( X  /  ( 2 ^ N ) ) [,) ( ( X  +  1 )  / 
( 2 ^ N
) ) ) )
Distinct variable group:    x, n
Allowed substitution hints:    I( x, n)    J( x, n)    N( x, n)    X( x, n)

Proof of Theorem dya2iocival
Dummy variables  m  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6289 . . . 4  |-  ( u  =  X  ->  (
u  /  ( 2 ^ m ) )  =  ( X  / 
( 2 ^ m
) ) )
2 oveq1 6289 . . . . 5  |-  ( u  =  X  ->  (
u  +  1 )  =  ( X  + 
1 ) )
32oveq1d 6297 . . . 4  |-  ( u  =  X  ->  (
( u  +  1 )  /  ( 2 ^ m ) )  =  ( ( X  +  1 )  / 
( 2 ^ m
) ) )
41, 3oveq12d 6300 . . 3  |-  ( u  =  X  ->  (
( u  /  (
2 ^ m ) ) [,) ( ( u  +  1 )  /  ( 2 ^ m ) ) )  =  ( ( X  /  ( 2 ^ m ) ) [,) ( ( X  + 
1 )  /  (
2 ^ m ) ) ) )
5 oveq2 6290 . . . . 5  |-  ( m  =  N  ->  (
2 ^ m )  =  ( 2 ^ N ) )
65oveq2d 6298 . . . 4  |-  ( m  =  N  ->  ( X  /  ( 2 ^ m ) )  =  ( X  /  (
2 ^ N ) ) )
75oveq2d 6298 . . . 4  |-  ( m  =  N  ->  (
( X  +  1 )  /  ( 2 ^ m ) )  =  ( ( X  +  1 )  / 
( 2 ^ N
) ) )
86, 7oveq12d 6300 . . 3  |-  ( m  =  N  ->  (
( X  /  (
2 ^ m ) ) [,) ( ( X  +  1 )  /  ( 2 ^ m ) ) )  =  ( ( X  /  ( 2 ^ N ) ) [,) ( ( X  + 
1 )  /  (
2 ^ N ) ) ) )
9 dya2ioc.1 . . . 4  |-  I  =  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
10 oveq1 6289 . . . . . 6  |-  ( u  =  x  ->  (
u  /  ( 2 ^ m ) )  =  ( x  / 
( 2 ^ m
) ) )
11 oveq1 6289 . . . . . . 7  |-  ( u  =  x  ->  (
u  +  1 )  =  ( x  + 
1 ) )
1211oveq1d 6297 . . . . . 6  |-  ( u  =  x  ->  (
( u  +  1 )  /  ( 2 ^ m ) )  =  ( ( x  +  1 )  / 
( 2 ^ m
) ) )
1310, 12oveq12d 6300 . . . . 5  |-  ( u  =  x  ->  (
( u  /  (
2 ^ m ) ) [,) ( ( u  +  1 )  /  ( 2 ^ m ) ) )  =  ( ( x  /  ( 2 ^ m ) ) [,) ( ( x  + 
1 )  /  (
2 ^ m ) ) ) )
14 oveq2 6290 . . . . . . 7  |-  ( m  =  n  ->  (
2 ^ m )  =  ( 2 ^ n ) )
1514oveq2d 6298 . . . . . 6  |-  ( m  =  n  ->  (
x  /  ( 2 ^ m ) )  =  ( x  / 
( 2 ^ n
) ) )
1614oveq2d 6298 . . . . . 6  |-  ( m  =  n  ->  (
( x  +  1 )  /  ( 2 ^ m ) )  =  ( ( x  +  1 )  / 
( 2 ^ n
) ) )
1715, 16oveq12d 6300 . . . . 5  |-  ( m  =  n  ->  (
( x  /  (
2 ^ m ) ) [,) ( ( x  +  1 )  /  ( 2 ^ m ) ) )  =  ( ( x  /  ( 2 ^ n ) ) [,) ( ( x  + 
1 )  /  (
2 ^ n ) ) ) )
1813, 17cbvmpt2v 6359 . . . 4  |-  ( u  e.  ZZ ,  m  e.  ZZ  |->  ( ( u  /  ( 2 ^ m ) ) [,) ( ( u  + 
1 )  /  (
2 ^ m ) ) ) )  =  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
199, 18eqtr4i 2499 . . 3  |-  I  =  ( u  e.  ZZ ,  m  e.  ZZ  |->  ( ( u  / 
( 2 ^ m
) ) [,) (
( u  +  1 )  /  ( 2 ^ m ) ) ) )
20 ovex 6307 . . 3  |-  ( ( X  /  ( 2 ^ N ) ) [,) ( ( X  +  1 )  / 
( 2 ^ N
) ) )  e. 
_V
214, 8, 19, 20ovmpt2 6420 . 2  |-  ( ( X  e.  ZZ  /\  N  e.  ZZ )  ->  ( X I N )  =  ( ( X  /  ( 2 ^ N ) ) [,) ( ( X  +  1 )  / 
( 2 ^ N
) ) ) )
2221ancoms 453 1  |-  ( ( N  e.  ZZ  /\  X  e.  ZZ )  ->  ( X I N )  =  ( ( X  /  ( 2 ^ N ) ) [,) ( ( X  +  1 )  / 
( 2 ^ N
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   ran crn 5000   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284   1c1 9489    + caddc 9491    / cdiv 10202   2c2 10581   ZZcz 10860   (,)cioo 11525   [,)cico 11527   ^cexp 12130   topGenctg 14689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-iota 5549  df-fun 5588  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287
This theorem is referenced by:  dya2iocress  27885  dya2iocbrsiga  27886  dya2icoseg  27888
  Copyright terms: Public domain W3C validator