Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2icoseg2 Structured version   Unicode version

Theorem dya2icoseg2 27889
Description: For any point and any open interval of  RR containing that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 12-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0  |-  J  =  ( topGen `  ran  (,) )
dya2ioc.1  |-  I  =  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
Assertion
Ref Expression
dya2icoseg2  |-  ( ( X  e.  RR  /\  E  e.  ran  (,)  /\  X  e.  E )  ->  E. b  e.  ran  I ( X  e.  b  /\  b  C_  E ) )
Distinct variable groups:    x, n    x, I    n, b, x    E, b, x    I, b    X, b, x
Allowed substitution hints:    E( n)    I( n)    J( x, n, b)    X( n)

Proof of Theorem dya2icoseg2
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 sxbrsiga.0 . . . . . 6  |-  J  =  ( topGen `  ran  (,) )
2 dya2ioc.1 . . . . . 6  |-  I  =  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
3 eqid 2467 . . . . . 6  |-  ( |_
`  ( 1  -  ( 2logb d ) ) )  =  ( |_ `  ( 1  -  ( 2logb d ) ) )
41, 2, 3dya2icoseg 27888 . . . . 5  |-  ( ( X  e.  RR  /\  d  e.  RR+ )  ->  E. b  e.  ran  I ( X  e.  b  /\  b  C_  ( ( X  -  d ) (,) ( X  +  d )
) ) )
54ralrimiva 2878 . . . 4  |-  ( X  e.  RR  ->  A. d  e.  RR+  E. b  e. 
ran  I ( X  e.  b  /\  b  C_  ( ( X  -  d ) (,) ( X  +  d )
) ) )
653ad2ant1 1017 . . 3  |-  ( ( X  e.  RR  /\  E  e.  ran  (,)  /\  X  e.  E )  ->  A. d  e.  RR+  E. b  e.  ran  I
( X  e.  b  /\  b  C_  (
( X  -  d
) (,) ( X  +  d ) ) ) )
7 simp3 998 . . . . 5  |-  ( ( X  e.  RR  /\  E  e.  ran  (,)  /\  X  e.  E )  ->  X  e.  E )
8 iooex 11548 . . . . . . . . . 10  |-  (,)  e.  _V
98rnex 6715 . . . . . . . . 9  |-  ran  (,)  e.  _V
10 bastg 19234 . . . . . . . . 9  |-  ( ran 
(,)  e.  _V  ->  ran 
(,)  C_  ( topGen `  ran  (,) ) )
119, 10ax-mp 5 . . . . . . . 8  |-  ran  (,)  C_  ( topGen `  ran  (,) )
12 simp2 997 . . . . . . . 8  |-  ( ( X  e.  RR  /\  E  e.  ran  (,)  /\  X  e.  E )  ->  E  e.  ran  (,) )
1311, 12sseldi 3502 . . . . . . 7  |-  ( ( X  e.  RR  /\  E  e.  ran  (,)  /\  X  e.  E )  ->  E  e.  ( topGen ` 
ran  (,) ) )
1413, 1syl6eleqr 2566 . . . . . 6  |-  ( ( X  e.  RR  /\  E  e.  ran  (,)  /\  X  e.  E )  ->  E  e.  J )
15 eqid 2467 . . . . . . . . 9  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
1615rexmet 21031 . . . . . . . 8  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )
17 recms 21547 . . . . . . . . . . 11  |- RRfld  e. CMetSp
18 cmsms 21522 . . . . . . . . . . 11  |-  (RRfld  e. CMetSp  -> RRfld  e. 
MetSp )
19 msxms 20692 . . . . . . . . . . 11  |-  (RRfld  e.  MetSp  -> RRfld 
e.  *MetSp )
2017, 18, 19mp2b 10 . . . . . . . . . 10  |- RRfld  e.  *MetSp
21 retopn 21546 . . . . . . . . . . . 12  |-  ( topGen ` 
ran  (,) )  =  (
TopOpen ` RRfld )
221, 21eqtri 2496 . . . . . . . . . . 11  |-  J  =  ( TopOpen ` RRfld )
23 rebase 18409 . . . . . . . . . . 11  |-  RR  =  ( Base ` RRfld )
24 reds 18419 . . . . . . . . . . . 12  |-  ( abs 
o.  -  )  =  ( dist ` RRfld )
2524reseq1i 5267 . . . . . . . . . . 11  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( dist ` RRfld )  |`  ( RR  X.  RR ) )
2622, 23, 25xmstopn 20689 . . . . . . . . . 10  |-  (RRfld  e.  *MetSp  ->  J  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ) )
2720, 26ax-mp 5 . . . . . . . . 9  |-  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) )
2827elmopn2 20683 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )  ->  ( E  e.  J  <->  ( E  C_  RR  /\  A. x  e.  E  E. d  e.  RR+  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) d )  C_  E ) ) )
2916, 28ax-mp 5 . . . . . . 7  |-  ( E  e.  J  <->  ( E  C_  RR  /\  A. x  e.  E  E. d  e.  RR+  ( x (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) d )  C_  E )
)
3029simprbi 464 . . . . . 6  |-  ( E  e.  J  ->  A. x  e.  E  E. d  e.  RR+  ( x (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) d )  C_  E )
3114, 30syl 16 . . . . 5  |-  ( ( X  e.  RR  /\  E  e.  ran  (,)  /\  X  e.  E )  ->  A. x  e.  E  E. d  e.  RR+  (
x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) d )  C_  E )
32 oveq1 6289 . . . . . . . 8  |-  ( x  =  X  ->  (
x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) d )  =  ( X ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) d ) )
3332sseq1d 3531 . . . . . . 7  |-  ( x  =  X  ->  (
( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) d )  C_  E 
<->  ( X ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) d )  C_  E ) )
3433rexbidv 2973 . . . . . 6  |-  ( x  =  X  ->  ( E. d  e.  RR+  (
x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) d )  C_  E  <->  E. d  e.  RR+  ( X (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) d )  C_  E )
)
3534rspcva 3212 . . . . 5  |-  ( ( X  e.  E  /\  A. x  e.  E  E. d  e.  RR+  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) d )  C_  E )  ->  E. d  e.  RR+  ( X ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) d )  C_  E )
367, 31, 35syl2anc 661 . . . 4  |-  ( ( X  e.  RR  /\  E  e.  ran  (,)  /\  X  e.  E )  ->  E. d  e.  RR+  ( X ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) d )  C_  E )
37 rpre 11222 . . . . . . 7  |-  ( d  e.  RR+  ->  d  e.  RR )
3815bl2ioo 21032 . . . . . . . 8  |-  ( ( X  e.  RR  /\  d  e.  RR )  ->  ( X ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) d )  =  ( ( X  -  d ) (,) ( X  +  d )
) )
3938sseq1d 3531 . . . . . . 7  |-  ( ( X  e.  RR  /\  d  e.  RR )  ->  ( ( X (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) d )  C_  E  <->  ( ( X  -  d ) (,) ( X  +  d ) )  C_  E
) )
4037, 39sylan2 474 . . . . . 6  |-  ( ( X  e.  RR  /\  d  e.  RR+ )  -> 
( ( X (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) d )  C_  E  <->  ( ( X  -  d ) (,) ( X  +  d ) )  C_  E
) )
4140rexbidva 2970 . . . . 5  |-  ( X  e.  RR  ->  ( E. d  e.  RR+  ( X ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) d )  C_  E  <->  E. d  e.  RR+  ( ( X  -  d ) (,) ( X  +  d ) )  C_  E
) )
42413ad2ant1 1017 . . . 4  |-  ( ( X  e.  RR  /\  E  e.  ran  (,)  /\  X  e.  E )  ->  ( E. d  e.  RR+  ( X ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) d )  C_  E 
<->  E. d  e.  RR+  ( ( X  -  d ) (,) ( X  +  d )
)  C_  E )
)
4336, 42mpbid 210 . . 3  |-  ( ( X  e.  RR  /\  E  e.  ran  (,)  /\  X  e.  E )  ->  E. d  e.  RR+  ( ( X  -  d ) (,) ( X  +  d )
)  C_  E )
44 r19.29 2997 . . 3  |-  ( ( A. d  e.  RR+  E. b  e.  ran  I
( X  e.  b  /\  b  C_  (
( X  -  d
) (,) ( X  +  d ) ) )  /\  E. d  e.  RR+  ( ( X  -  d ) (,) ( X  +  d ) )  C_  E
)  ->  E. d  e.  RR+  ( E. b  e.  ran  I ( X  e.  b  /\  b  C_  ( ( X  -  d ) (,) ( X  +  d )
) )  /\  (
( X  -  d
) (,) ( X  +  d ) ) 
C_  E ) )
456, 43, 44syl2anc 661 . 2  |-  ( ( X  e.  RR  /\  E  e.  ran  (,)  /\  X  e.  E )  ->  E. d  e.  RR+  ( E. b  e.  ran  I ( X  e.  b  /\  b  C_  ( ( X  -  d ) (,) ( X  +  d )
) )  /\  (
( X  -  d
) (,) ( X  +  d ) ) 
C_  E ) )
46 r19.41v 3014 . . . 4  |-  ( E. b  e.  ran  I
( ( X  e.  b  /\  b  C_  ( ( X  -  d ) (,) ( X  +  d )
) )  /\  (
( X  -  d
) (,) ( X  +  d ) ) 
C_  E )  <->  ( E. b  e.  ran  I ( X  e.  b  /\  b  C_  ( ( X  -  d ) (,) ( X  +  d ) ) )  /\  ( ( X  -  d ) (,) ( X  +  d )
)  C_  E )
)
47 sstr 3512 . . . . . . 7  |-  ( ( b  C_  ( ( X  -  d ) (,) ( X  +  d ) )  /\  (
( X  -  d
) (,) ( X  +  d ) ) 
C_  E )  -> 
b  C_  E )
4847anim2i 569 . . . . . 6  |-  ( ( X  e.  b  /\  ( b  C_  (
( X  -  d
) (,) ( X  +  d ) )  /\  ( ( X  -  d ) (,) ( X  +  d ) )  C_  E
) )  ->  ( X  e.  b  /\  b  C_  E ) )
4948anassrs 648 . . . . 5  |-  ( ( ( X  e.  b  /\  b  C_  (
( X  -  d
) (,) ( X  +  d ) ) )  /\  ( ( X  -  d ) (,) ( X  +  d ) )  C_  E )  ->  ( X  e.  b  /\  b  C_  E ) )
5049reximi 2932 . . . 4  |-  ( E. b  e.  ran  I
( ( X  e.  b  /\  b  C_  ( ( X  -  d ) (,) ( X  +  d )
) )  /\  (
( X  -  d
) (,) ( X  +  d ) ) 
C_  E )  ->  E. b  e.  ran  I ( X  e.  b  /\  b  C_  E ) )
5146, 50sylbir 213 . . 3  |-  ( ( E. b  e.  ran  I ( X  e.  b  /\  b  C_  ( ( X  -  d ) (,) ( X  +  d )
) )  /\  (
( X  -  d
) (,) ( X  +  d ) ) 
C_  E )  ->  E. b  e.  ran  I ( X  e.  b  /\  b  C_  E ) )
5251rexlimivw 2952 . 2  |-  ( E. d  e.  RR+  ( E. b  e.  ran  I ( X  e.  b  /\  b  C_  ( ( X  -  d ) (,) ( X  +  d )
) )  /\  (
( X  -  d
) (,) ( X  +  d ) ) 
C_  E )  ->  E. b  e.  ran  I ( X  e.  b  /\  b  C_  E ) )
5345, 52syl 16 1  |-  ( ( X  e.  RR  /\  E  e.  ran  (,)  /\  X  e.  E )  ->  E. b  e.  ran  I ( X  e.  b  /\  b  C_  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   _Vcvv 3113    C_ wss 3476    X. cxp 4997   ran crn 5000    |` cres 5001    o. ccom 5003   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284   RRcr 9487   1c1 9489    + caddc 9491    - cmin 9801    / cdiv 10202   2c2 10581   ZZcz 10860   RR+crp 11216   (,)cioo 11525   [,)cico 11527   |_cfl 11891   ^cexp 12130   abscabs 13026   distcds 14560   TopOpenctopn 14673   topGenctg 14689   *Metcxmt 18174   ballcbl 18176   MetOpencmopn 18179  RRfldcrefld 18407   *MetSpcxme 20555   MetSpcmt 20556  CMetSpccms 21506  logbclogb 27646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ioc 11530  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-fac 12318  df-bc 12345  df-hash 12370  df-shft 12859  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-limsup 13253  df-clim 13270  df-rlim 13271  df-sum 13468  df-ef 13661  df-sin 13663  df-cos 13664  df-pi 13666  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-hom 14575  df-cco 14576  df-rest 14674  df-topn 14675  df-0g 14693  df-gsum 14694  df-topgen 14695  df-pt 14696  df-prds 14699  df-xrs 14753  df-qtop 14758  df-imas 14759  df-xps 14761  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-submnd 15778  df-mulg 15861  df-cntz 16150  df-cmn 16596  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-fbas 18187  df-fg 18188  df-cnfld 18192  df-refld 18408  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-cld 19286  df-ntr 19287  df-cls 19288  df-nei 19365  df-lp 19403  df-perf 19404  df-cn 19494  df-cnp 19495  df-haus 19582  df-cmp 19653  df-tx 19798  df-hmeo 19991  df-fil 20082  df-fm 20174  df-flim 20175  df-flf 20176  df-fcls 20177  df-xms 20558  df-ms 20559  df-tms 20560  df-cncf 21117  df-cfil 21429  df-cmet 21431  df-cms 21509  df-limc 22005  df-dv 22006  df-log 22672  df-cxp 22673  df-logb 27647
This theorem is referenced by:  dya2iocnrect  27892
  Copyright terms: Public domain W3C validator