Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvtanlem Structured version   Unicode version

Theorem dvtanlem 28394
Description: Lemma for dvtan 28395- the domain of the tangent is open. (Contributed by Brendan Leahy, 8-Aug-2018.)
Assertion
Ref Expression
dvtanlem  |-  ( `' cos " ( CC 
\  { 0 } ) )  e.  (
TopOpen ` fld )

Proof of Theorem dvtanlem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cosf 13401 . . . 4  |-  cos : CC
--> CC
2 ffun 5556 . . . 4  |-  ( cos
: CC --> CC  ->  Fun 
cos )
3 difpreima 5826 . . . 4  |-  ( Fun 
cos  ->  ( `' cos " ( CC  \  {
0 } ) )  =  ( ( `' cos " CC ) 
\  ( `' cos " { 0 } ) ) )
41, 2, 3mp2b 10 . . 3  |-  ( `' cos " ( CC 
\  { 0 } ) )  =  ( ( `' cos " CC )  \  ( `' cos " { 0 } ) )
5 fimacnv 5830 . . . . 5  |-  ( cos
: CC --> CC  ->  ( `' cos " CC )  =  CC )
61, 5ax-mp 5 . . . 4  |-  ( `' cos " CC )  =  CC
7 0re 9378 . . . . . 6  |-  0  e.  RR
8 ffn 5554 . . . . . . . . 9  |-  ( cos
: CC --> CC  ->  cos 
Fn  CC )
91, 8ax-mp 5 . . . . . . . 8  |-  cos  Fn  CC
10 dffn5 5732 . . . . . . . 8  |-  ( cos 
Fn  CC  <->  cos  =  ( x  e.  CC  |->  ( cos `  x ) ) )
119, 10mpbi 208 . . . . . . 7  |-  cos  =  ( x  e.  CC  |->  ( cos `  x ) )
1211mptiniseg 5327 . . . . . 6  |-  ( 0  e.  RR  ->  ( `' cos " { 0 } )  =  {
x  e.  CC  | 
( cos `  x
)  =  0 } )
137, 12ax-mp 5 . . . . 5  |-  ( `' cos " { 0 } )  =  {
x  e.  CC  | 
( cos `  x
)  =  0 }
14 sinhalfpip 21929 . . . . . . . 8  |-  ( x  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  +  x ) )  =  ( cos `  x
) )
1514eqeq1d 2446 . . . . . . 7  |-  ( x  e.  CC  ->  (
( sin `  (
( pi  /  2
)  +  x ) )  =  0  <->  ( cos `  x )  =  0 ) )
16 halfpire 21901 . . . . . . . . . 10  |-  ( pi 
/  2 )  e.  RR
1716recni 9390 . . . . . . . . 9  |-  ( pi 
/  2 )  e.  CC
18 addcl 9356 . . . . . . . . 9  |-  ( ( ( pi  /  2
)  e.  CC  /\  x  e.  CC )  ->  ( ( pi  / 
2 )  +  x
)  e.  CC )
1917, 18mpan 670 . . . . . . . 8  |-  ( x  e.  CC  ->  (
( pi  /  2
)  +  x )  e.  CC )
20 sineq0 21958 . . . . . . . 8  |-  ( ( ( pi  /  2
)  +  x )  e.  CC  ->  (
( sin `  (
( pi  /  2
)  +  x ) )  =  0  <->  (
( ( pi  / 
2 )  +  x
)  /  pi )  e.  ZZ ) )
2119, 20syl 16 . . . . . . 7  |-  ( x  e.  CC  ->  (
( sin `  (
( pi  /  2
)  +  x ) )  =  0  <->  (
( ( pi  / 
2 )  +  x
)  /  pi )  e.  ZZ ) )
2215, 21bitr3d 255 . . . . . 6  |-  ( x  e.  CC  ->  (
( cos `  x
)  =  0  <->  (
( ( pi  / 
2 )  +  x
)  /  pi )  e.  ZZ ) )
2322rabbiia 2956 . . . . 5  |-  { x  e.  CC  |  ( cos `  x )  =  0 }  =  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ }
2413, 23eqtri 2458 . . . 4  |-  ( `' cos " { 0 } )  =  {
x  e.  CC  | 
( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ }
256, 24difeq12i 3467 . . 3  |-  ( ( `' cos " CC ) 
\  ( `' cos " { 0 } ) )  =  ( CC 
\  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ } )
264, 25eqtri 2458 . 2  |-  ( `' cos " ( CC 
\  { 0 } ) )  =  ( CC  \  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ } )
27 eqid 2438 . . . . 5  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2827recld2 20366 . . . 4  |-  RR  e.  ( Clsd `  ( TopOpen ` fld ) )
29 nftru 1599 . . . . . . . . 9  |-  F/ x T.
30 nfcv 2574 . . . . . . . . 9  |-  F/_ x U_ y  e.  ZZ  ( ( ( pi  x.  y )  -  ( pi  /  2
) ) (,) (
( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) ) )
31 nfcv 2574 . . . . . . . . . 10  |-  F/_ x RR
32 nfrab1 2896 . . . . . . . . . 10  |-  F/_ x { x  e.  CC  |  ( ( ( pi  /  2 )  +  x )  /  pi )  e.  ZZ }
3331, 32nfdif 3472 . . . . . . . . 9  |-  F/_ x
( RR  \  {
x  e.  CC  | 
( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ } )
34 eliun 4170 . . . . . . . . . . 11  |-  ( x  e.  U_ y  e.  ZZ  ( ( ( pi  x.  y )  -  ( pi  / 
2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) ) )  <->  E. y  e.  ZZ  x  e.  ( ( ( pi  x.  y )  -  (
pi  /  2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  ( pi  / 
2 ) ) ) )
35 elioore 11322 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( ( pi  x.  y )  -  ( pi  / 
2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) ) )  ->  x  e.  RR )
3635adantl 466 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ZZ  /\  x  e.  ( (
( pi  x.  y
)  -  ( pi 
/  2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  ( pi  /  2
) ) ) )  ->  x  e.  RR )
37 zre 10642 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ZZ  ->  y  e.  RR )
38 pire 21896 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  pi  e.  RR
39 remulcl 9359 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( pi  e.  RR  /\  y  e.  RR )  ->  ( pi  x.  y
)  e.  RR )
4038, 39mpan 670 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  RR  ->  (
pi  x.  y )  e.  RR )
41 resubcl 9665 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( pi  x.  y
)  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( ( pi  x.  y )  -  ( pi  /  2
) )  e.  RR )
4240, 16, 41sylancl 662 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  RR  ->  (
( pi  x.  y
)  -  ( pi 
/  2 ) )  e.  RR )
4342rexrd 9425 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  RR  ->  (
( pi  x.  y
)  -  ( pi 
/  2 ) )  e.  RR* )
44 peano2re 9534 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  RR  ->  (
y  +  1 )  e.  RR )
45 remulcl 9359 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( pi  e.  RR  /\  ( y  +  1 )  e.  RR )  ->  ( pi  x.  ( y  +  1 ) )  e.  RR )
4638, 44, 45sylancr 663 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  RR  ->  (
pi  x.  ( y  +  1 ) )  e.  RR )
47 resubcl 9665 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( pi  x.  (
y  +  1 ) )  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( ( pi  x.  ( y  +  1 ) )  -  ( pi  /  2
) )  e.  RR )
4846, 16, 47sylancl 662 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  RR  ->  (
( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) )  e.  RR )
4948rexrd 9425 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  RR  ->  (
( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) )  e.  RR* )
50 elioo2 11333 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( pi  x.  y )  -  (
pi  /  2 ) )  e.  RR*  /\  (
( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) )  e.  RR* )  ->  (
x  e.  ( ( ( pi  x.  y
)  -  ( pi 
/  2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  ( pi  /  2
) ) )  <->  ( x  e.  RR  /\  ( ( pi  x.  y )  -  ( pi  / 
2 ) )  < 
x  /\  x  <  ( ( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) ) ) ) )
5143, 49, 50syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  RR  ->  (
x  e.  ( ( ( pi  x.  y
)  -  ( pi 
/  2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  ( pi  /  2
) ) )  <->  ( x  e.  RR  /\  ( ( pi  x.  y )  -  ( pi  / 
2 ) )  < 
x  /\  x  <  ( ( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) ) ) ) )
52 ltadd2 9470 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( pi  x.  y )  -  (
pi  /  2 ) )  e.  RR  /\  x  e.  RR  /\  (
pi  /  2 )  e.  RR )  -> 
( ( ( pi  x.  y )  -  ( pi  /  2
) )  <  x  <->  ( ( pi  /  2
)  +  ( ( pi  x.  y )  -  ( pi  / 
2 ) ) )  <  ( ( pi 
/  2 )  +  x ) ) )
5316, 52mp3an3 1303 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( pi  x.  y )  -  (
pi  /  2 ) )  e.  RR  /\  x  e.  RR )  ->  ( ( ( pi  x.  y )  -  ( pi  /  2
) )  <  x  <->  ( ( pi  /  2
)  +  ( ( pi  x.  y )  -  ( pi  / 
2 ) ) )  <  ( ( pi 
/  2 )  +  x ) ) )
5442, 53sylan 471 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( ( ( pi  x.  y )  -  ( pi  /  2
) )  <  x  <->  ( ( pi  /  2
)  +  ( ( pi  x.  y )  -  ( pi  / 
2 ) ) )  <  ( ( pi 
/  2 )  +  x ) ) )
55 readdcl 9357 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( pi  /  2
)  e.  RR  /\  ( ( pi  x.  y )  -  (
pi  /  2 ) )  e.  RR )  ->  ( ( pi 
/  2 )  +  ( ( pi  x.  y )  -  (
pi  /  2 ) ) )  e.  RR )
5616, 42, 55sylancr 663 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  RR  ->  (
( pi  /  2
)  +  ( ( pi  x.  y )  -  ( pi  / 
2 ) ) )  e.  RR )
57 readdcl 9357 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( pi  /  2
)  e.  RR  /\  x  e.  RR )  ->  ( ( pi  / 
2 )  +  x
)  e.  RR )
5816, 57mpan 670 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  RR  ->  (
( pi  /  2
)  +  x )  e.  RR )
59 pipos 21898 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  0  <  pi
6038, 59pm3.2i 455 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( pi  e.  RR  /\  0  <  pi )
61 ltdiv1 10185 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( pi  / 
2 )  +  ( ( pi  x.  y
)  -  ( pi 
/  2 ) ) )  e.  RR  /\  ( ( pi  / 
2 )  +  x
)  e.  RR  /\  ( pi  e.  RR  /\  0  <  pi ) )  ->  ( (
( pi  /  2
)  +  ( ( pi  x.  y )  -  ( pi  / 
2 ) ) )  <  ( ( pi 
/  2 )  +  x )  <->  ( (
( pi  /  2
)  +  ( ( pi  x.  y )  -  ( pi  / 
2 ) ) )  /  pi )  < 
( ( ( pi 
/  2 )  +  x )  /  pi ) ) )
6260, 61mp3an3 1303 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( pi  / 
2 )  +  ( ( pi  x.  y
)  -  ( pi 
/  2 ) ) )  e.  RR  /\  ( ( pi  / 
2 )  +  x
)  e.  RR )  ->  ( ( ( pi  /  2 )  +  ( ( pi  x.  y )  -  ( pi  /  2
) ) )  < 
( ( pi  / 
2 )  +  x
)  <->  ( ( ( pi  /  2 )  +  ( ( pi  x.  y )  -  ( pi  /  2
) ) )  /  pi )  <  ( ( ( pi  /  2
)  +  x )  /  pi ) ) )
6356, 58, 62syl2an 477 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( ( ( pi 
/  2 )  +  ( ( pi  x.  y )  -  (
pi  /  2 ) ) )  <  (
( pi  /  2
)  +  x )  <-> 
( ( ( pi 
/  2 )  +  ( ( pi  x.  y )  -  (
pi  /  2 ) ) )  /  pi )  <  ( ( ( pi  /  2 )  +  x )  /  pi ) ) )
64 recn 9364 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( y  e.  RR  ->  y  e.  CC )
6538recni 9390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  pi  e.  CC
66 mulcl 9358 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( pi  e.  CC  /\  y  e.  CC )  ->  ( pi  x.  y
)  e.  CC )
6765, 66mpan 670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( y  e.  CC  ->  (
pi  x.  y )  e.  CC )
68 pncan3 9610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( pi  /  2
)  e.  CC  /\  ( pi  x.  y
)  e.  CC )  ->  ( ( pi 
/  2 )  +  ( ( pi  x.  y )  -  (
pi  /  2 ) ) )  =  ( pi  x.  y ) )
6917, 67, 68sylancr 663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( y  e.  CC  ->  (
( pi  /  2
)  +  ( ( pi  x.  y )  -  ( pi  / 
2 ) ) )  =  ( pi  x.  y ) )
7069oveq1d 6101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  e.  CC  ->  (
( ( pi  / 
2 )  +  ( ( pi  x.  y
)  -  ( pi 
/  2 ) ) )  /  pi )  =  ( ( pi  x.  y )  /  pi ) )
717, 59gtneii 9478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  pi  =/=  0
72 divcan3 10010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( y  e.  CC  /\  pi  e.  CC  /\  pi  =/=  0 )  ->  (
( pi  x.  y
)  /  pi )  =  y )
7365, 71, 72mp3an23 1306 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  e.  CC  ->  (
( pi  x.  y
)  /  pi )  =  y )
7470, 73eqtrd 2470 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( y  e.  CC  ->  (
( ( pi  / 
2 )  +  ( ( pi  x.  y
)  -  ( pi 
/  2 ) ) )  /  pi )  =  y )
7564, 74syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  e.  RR  ->  (
( ( pi  / 
2 )  +  ( ( pi  x.  y
)  -  ( pi 
/  2 ) ) )  /  pi )  =  y )
7675adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( ( ( pi 
/  2 )  +  ( ( pi  x.  y )  -  (
pi  /  2 ) ) )  /  pi )  =  y )
7776breq1d 4297 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( ( ( ( pi  /  2 )  +  ( ( pi  x.  y )  -  ( pi  /  2
) ) )  /  pi )  <  ( ( ( pi  /  2
)  +  x )  /  pi )  <->  y  <  ( ( ( pi  / 
2 )  +  x
)  /  pi ) ) )
7854, 63, 773bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( ( ( pi  x.  y )  -  ( pi  /  2
) )  <  x  <->  y  <  ( ( ( pi  /  2 )  +  x )  /  pi ) ) )
7938, 45mpan 670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( y  +  1 )  e.  RR  ->  (
pi  x.  ( y  +  1 ) )  e.  RR )
8079, 16, 47sylancl 662 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( y  +  1 )  e.  RR  ->  (
( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) )  e.  RR )
81 ltadd2 9470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( x  e.  RR  /\  ( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) )  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( x  < 
( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) )  <->  ( ( pi 
/  2 )  +  x )  <  (
( pi  /  2
)  +  ( ( pi  x.  ( y  +  1 ) )  -  ( pi  / 
2 ) ) ) ) )
8216, 81mp3an3 1303 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( x  e.  RR  /\  ( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) )  e.  RR )  ->  ( x  < 
( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) )  <->  ( ( pi 
/  2 )  +  x )  <  (
( pi  /  2
)  +  ( ( pi  x.  ( y  +  1 ) )  -  ( pi  / 
2 ) ) ) ) )
8380, 82sylan2 474 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x  e.  RR  /\  ( y  +  1 )  e.  RR )  ->  ( x  < 
( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) )  <->  ( ( pi 
/  2 )  +  x )  <  (
( pi  /  2
)  +  ( ( pi  x.  ( y  +  1 ) )  -  ( pi  / 
2 ) ) ) ) )
84 readdcl 9357 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( pi  /  2
)  e.  RR  /\  ( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) )  e.  RR )  ->  ( ( pi 
/  2 )  +  ( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) ) )  e.  RR )
8516, 80, 84sylancr 663 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( y  +  1 )  e.  RR  ->  (
( pi  /  2
)  +  ( ( pi  x.  ( y  +  1 ) )  -  ( pi  / 
2 ) ) )  e.  RR )
86 ltdiv1 10185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( pi  / 
2 )  +  x
)  e.  RR  /\  ( ( pi  / 
2 )  +  ( ( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) ) )  e.  RR  /\  ( pi  e.  RR  /\  0  <  pi ) )  ->  ( (
( pi  /  2
)  +  x )  <  ( ( pi 
/  2 )  +  ( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) ) )  <->  ( (
( pi  /  2
)  +  x )  /  pi )  < 
( ( ( pi 
/  2 )  +  ( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) ) )  /  pi ) ) )
8760, 86mp3an3 1303 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( pi  / 
2 )  +  x
)  e.  RR  /\  ( ( pi  / 
2 )  +  ( ( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) ) )  e.  RR )  ->  ( ( ( pi  /  2 )  +  x )  < 
( ( pi  / 
2 )  +  ( ( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) ) )  <->  ( ( ( pi  /  2 )  +  x )  /  pi )  <  ( ( ( pi  /  2
)  +  ( ( pi  x.  ( y  +  1 ) )  -  ( pi  / 
2 ) ) )  /  pi ) ) )
8858, 85, 87syl2an 477 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x  e.  RR  /\  ( y  +  1 )  e.  RR )  ->  ( ( ( pi  /  2 )  +  x )  < 
( ( pi  / 
2 )  +  ( ( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) ) )  <->  ( ( ( pi  /  2 )  +  x )  /  pi )  <  ( ( ( pi  /  2
)  +  ( ( pi  x.  ( y  +  1 ) )  -  ( pi  / 
2 ) ) )  /  pi ) ) )
89 recn 9364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( y  +  1 )  e.  RR  ->  (
y  +  1 )  e.  CC )
90 mulcl 9358 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( pi  e.  CC  /\  ( y  +  1 )  e.  CC )  ->  ( pi  x.  ( y  +  1 ) )  e.  CC )
9165, 90mpan 670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( y  +  1 )  e.  CC  ->  (
pi  x.  ( y  +  1 ) )  e.  CC )
92 pncan3 9610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( pi  /  2
)  e.  CC  /\  ( pi  x.  (
y  +  1 ) )  e.  CC )  ->  ( ( pi 
/  2 )  +  ( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) ) )  =  ( pi  x.  ( y  +  1 ) ) )
9317, 91, 92sylancr 663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( y  +  1 )  e.  CC  ->  (
( pi  /  2
)  +  ( ( pi  x.  ( y  +  1 ) )  -  ( pi  / 
2 ) ) )  =  ( pi  x.  ( y  +  1 ) ) )
9493oveq1d 6101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( y  +  1 )  e.  CC  ->  (
( ( pi  / 
2 )  +  ( ( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) ) )  /  pi )  =  ( ( pi  x.  ( y  +  1 ) )  /  pi ) )
95 divcan3 10010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( y  +  1 )  e.  CC  /\  pi  e.  CC  /\  pi  =/=  0 )  ->  (
( pi  x.  (
y  +  1 ) )  /  pi )  =  ( y  +  1 ) )
9665, 71, 95mp3an23 1306 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( y  +  1 )  e.  CC  ->  (
( pi  x.  (
y  +  1 ) )  /  pi )  =  ( y  +  1 ) )
9794, 96eqtrd 2470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( y  +  1 )  e.  CC  ->  (
( ( pi  / 
2 )  +  ( ( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) ) )  /  pi )  =  ( y  +  1 ) )
9889, 97syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( y  +  1 )  e.  RR  ->  (
( ( pi  / 
2 )  +  ( ( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) ) )  /  pi )  =  ( y  +  1 ) )
9998adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( x  e.  RR  /\  ( y  +  1 )  e.  RR )  ->  ( ( ( pi  /  2 )  +  ( ( pi  x.  ( y  +  1 ) )  -  ( pi  /  2
) ) )  /  pi )  =  (
y  +  1 ) )
10099breq2d 4299 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x  e.  RR  /\  ( y  +  1 )  e.  RR )  ->  ( ( ( ( pi  /  2
)  +  x )  /  pi )  < 
( ( ( pi 
/  2 )  +  ( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) ) )  /  pi ) 
<->  ( ( ( pi 
/  2 )  +  x )  /  pi )  <  ( y  +  1 ) ) )
10183, 88, 1003bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( x  e.  RR  /\  ( y  +  1 )  e.  RR )  ->  ( x  < 
( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) )  <->  ( ( ( pi  /  2 )  +  x )  /  pi )  <  ( y  +  1 ) ) )
10244, 101sylan2 474 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  <  (
( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) )  <-> 
( ( ( pi 
/  2 )  +  x )  /  pi )  <  ( y  +  1 ) ) )
103102ancoms 453 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( x  <  (
( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) )  <-> 
( ( ( pi 
/  2 )  +  x )  /  pi )  <  ( y  +  1 ) ) )
10478, 103anbi12d 710 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( ( ( ( pi  x.  y )  -  ( pi  / 
2 ) )  < 
x  /\  x  <  ( ( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) ) )  <->  ( y  < 
( ( ( pi 
/  2 )  +  x )  /  pi )  /\  ( ( ( pi  /  2 )  +  x )  /  pi )  <  ( y  +  1 ) ) ) )
105104biimpd 207 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( ( ( ( pi  x.  y )  -  ( pi  / 
2 ) )  < 
x  /\  x  <  ( ( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) ) )  ->  ( y  <  ( ( ( pi 
/  2 )  +  x )  /  pi )  /\  ( ( ( pi  /  2 )  +  x )  /  pi )  <  ( y  +  1 ) ) ) )
106105exp4b 607 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  RR  ->  (
x  e.  RR  ->  ( ( ( pi  x.  y )  -  (
pi  /  2 ) )  <  x  -> 
( x  <  (
( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) )  ->  ( y  < 
( ( ( pi 
/  2 )  +  x )  /  pi )  /\  ( ( ( pi  /  2 )  +  x )  /  pi )  <  ( y  +  1 ) ) ) ) ) )
1071063impd 1201 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  RR  ->  (
( x  e.  RR  /\  ( ( pi  x.  y )  -  (
pi  /  2 ) )  <  x  /\  x  <  ( ( pi  x.  ( y  +  1 ) )  -  ( pi  /  2
) ) )  -> 
( y  <  (
( ( pi  / 
2 )  +  x
)  /  pi )  /\  ( ( ( pi  /  2 )  +  x )  /  pi )  <  ( y  +  1 ) ) ) )
10851, 107sylbid 215 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  RR  ->  (
x  e.  ( ( ( pi  x.  y
)  -  ( pi 
/  2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  ( pi  /  2
) ) )  -> 
( y  <  (
( ( pi  / 
2 )  +  x
)  /  pi )  /\  ( ( ( pi  /  2 )  +  x )  /  pi )  <  ( y  +  1 ) ) ) )
10937, 108syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ZZ  ->  (
x  e.  ( ( ( pi  x.  y
)  -  ( pi 
/  2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  ( pi  /  2
) ) )  -> 
( y  <  (
( ( pi  / 
2 )  +  x
)  /  pi )  /\  ( ( ( pi  /  2 )  +  x )  /  pi )  <  ( y  +  1 ) ) ) )
110109imp 429 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ZZ  /\  x  e.  ( (
( pi  x.  y
)  -  ( pi 
/  2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  ( pi  /  2
) ) ) )  ->  ( y  < 
( ( ( pi 
/  2 )  +  x )  /  pi )  /\  ( ( ( pi  /  2 )  +  x )  /  pi )  <  ( y  +  1 ) ) )
111 btwnnz 10710 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ZZ  /\  y  <  ( ( ( pi  /  2 )  +  x )  /  pi )  /\  (
( ( pi  / 
2 )  +  x
)  /  pi )  <  ( y  +  1 ) )  ->  -.  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ )
1121113expb 1188 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ZZ  /\  ( y  <  (
( ( pi  / 
2 )  +  x
)  /  pi )  /\  ( ( ( pi  /  2 )  +  x )  /  pi )  <  ( y  +  1 ) ) )  ->  -.  (
( ( pi  / 
2 )  +  x
)  /  pi )  e.  ZZ )
113110, 112syldan 470 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ZZ  /\  x  e.  ( (
( pi  x.  y
)  -  ( pi 
/  2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  ( pi  /  2
) ) ) )  ->  -.  ( (
( pi  /  2
)  +  x )  /  pi )  e.  ZZ )
114113olcd 393 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ZZ  /\  x  e.  ( (
( pi  x.  y
)  -  ( pi 
/  2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  ( pi  /  2
) ) ) )  ->  ( -.  x  e.  CC  \/  -.  (
( ( pi  / 
2 )  +  x
)  /  pi )  e.  ZZ ) )
115 ianor 488 . . . . . . . . . . . . . . . 16  |-  ( -.  ( x  e.  CC  /\  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ )  <->  ( -.  x  e.  CC  \/  -.  ( ( ( pi  /  2 )  +  x )  /  pi )  e.  ZZ ) )
116 rabid 2892 . . . . . . . . . . . . . . . 16  |-  ( x  e.  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ }  <->  ( x  e.  CC  /\  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ ) )
117115, 116xchnxbir 309 . . . . . . . . . . . . . . 15  |-  ( -.  x  e.  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ }  <->  ( -.  x  e.  CC  \/  -.  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ )
)
118114, 117sylibr 212 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ZZ  /\  x  e.  ( (
( pi  x.  y
)  -  ( pi 
/  2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  ( pi  /  2
) ) ) )  ->  -.  x  e.  { x  e.  CC  | 
( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ } )
11936, 118eldifd 3334 . . . . . . . . . . . . 13  |-  ( ( y  e.  ZZ  /\  x  e.  ( (
( pi  x.  y
)  -  ( pi 
/  2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  ( pi  /  2
) ) ) )  ->  x  e.  ( RR  \  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ } ) )
120119rexlimiva 2831 . . . . . . . . . . . 12  |-  ( E. y  e.  ZZ  x  e.  ( ( ( pi  x.  y )  -  ( pi  /  2
) ) (,) (
( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) ) )  ->  x  e.  ( RR  \  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ } ) )
121 eldif 3333 . . . . . . . . . . . . . 14  |-  ( x  e.  ( RR  \  { x  e.  CC  |  ( ( ( pi  /  2 )  +  x )  /  pi )  e.  ZZ } )  <->  ( x  e.  RR  /\  -.  x  e.  { x  e.  CC  |  ( ( ( pi  /  2 )  +  x )  /  pi )  e.  ZZ } ) )
122 recn 9364 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  x  e.  CC )
123122biantrurd 508 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR  ->  (
( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ  <->  ( x  e.  CC  /\  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ ) ) )
124123, 116syl6bbr 263 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR  ->  (
( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ  <->  x  e.  { x  e.  CC  | 
( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ } ) )
125124notbid 294 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  ( -.  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ  <->  -.  x  e.  { x  e.  CC  |  ( ( ( pi  /  2 )  +  x )  /  pi )  e.  ZZ } ) )
126125pm5.32i 637 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  -.  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ )  <->  ( x  e.  RR  /\  -.  x  e.  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ } ) )
127121, 126bitr4i 252 . . . . . . . . . . . . 13  |-  ( x  e.  ( RR  \  { x  e.  CC  |  ( ( ( pi  /  2 )  +  x )  /  pi )  e.  ZZ } )  <->  ( x  e.  RR  /\  -.  (
( ( pi  / 
2 )  +  x
)  /  pi )  e.  ZZ ) )
128 redivcl 10042 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( pi  / 
2 )  +  x
)  e.  RR  /\  pi  e.  RR  /\  pi  =/=  0 )  ->  (
( ( pi  / 
2 )  +  x
)  /  pi )  e.  RR )
12938, 71, 128mp3an23 1306 . . . . . . . . . . . . . . . . 17  |-  ( ( ( pi  /  2
)  +  x )  e.  RR  ->  (
( ( pi  / 
2 )  +  x
)  /  pi )  e.  RR )
13058, 129syl 16 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR  ->  (
( ( pi  / 
2 )  +  x
)  /  pi )  e.  RR )
131130flcld 11640 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) )  e.  ZZ )
132131adantr 465 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  -.  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ )  ->  ( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  e.  ZZ )
133 simpl 457 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  -.  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ )  ->  x  e.  RR )
134 flle 11641 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( pi  / 
2 )  +  x
)  /  pi )  e.  RR  ->  ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) )  <_  (
( ( pi  / 
2 )  +  x
)  /  pi ) )
135130, 134syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) )  <_  (
( ( pi  / 
2 )  +  x
)  /  pi ) )
136135adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  -.  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ )  ->  ( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  <_  ( (
( pi  /  2
)  +  x )  /  pi ) )
137 nelne2 2697 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  e.  ZZ  /\  -.  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ )  ->  ( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  =/=  ( ( ( pi  /  2
)  +  x )  /  pi ) )
138137necomd 2690 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  e.  ZZ  /\  -.  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ )  ->  ( ( ( pi 
/  2 )  +  x )  /  pi )  =/=  ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) ) )
139131, 138sylan 471 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  -.  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ )  ->  ( ( ( pi 
/  2 )  +  x )  /  pi )  =/=  ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) ) )
140131zred 10739 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  RR  ->  ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) )  e.  RR )
14138, 59elrpii 10986 . . . . . . . . . . . . . . . . . . . . 21  |-  pi  e.  RR+
142141a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  RR  ->  pi  e.  RR+ )
143140, 130, 142ltmul2d 11057 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR  ->  (
( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  <  ( ( ( pi  /  2
)  +  x )  /  pi )  <->  ( pi  x.  ( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) ) )  <  (
pi  x.  ( (
( pi  /  2
)  +  x )  /  pi ) ) ) )
144140, 130ltlend 9511 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR  ->  (
( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  <  ( ( ( pi  /  2
)  +  x )  /  pi )  <->  ( ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) )  <_  (
( ( pi  / 
2 )  +  x
)  /  pi )  /\  ( ( ( pi  /  2 )  +  x )  /  pi )  =/=  ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) ) ) ) )
145 remulcl 9359 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( pi  e.  RR  /\  ( |_ `  ( ( ( pi  /  2
)  +  x )  /  pi ) )  e.  RR )  -> 
( pi  x.  ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) ) )  e.  RR )
14638, 140, 145sylancr 663 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  RR  ->  (
pi  x.  ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) ) )  e.  RR )
147 remulcl 9359 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( pi  e.  RR  /\  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  RR )  ->  ( pi  x.  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  e.  RR )
14838, 130, 147sylancr 663 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  RR  ->  (
pi  x.  ( (
( pi  /  2
)  +  x )  /  pi ) )  e.  RR )
14916a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  RR  ->  (
pi  /  2 )  e.  RR )
150146, 148, 149ltsub1d 9940 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR  ->  (
( pi  x.  ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) ) )  < 
( pi  x.  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  <->  ( ( pi  x.  ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) ) )  -  ( pi  /  2
) )  <  (
( pi  x.  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  -  ( pi 
/  2 ) ) ) )
151143, 144, 1503bitr3rd 284 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  (
( ( pi  x.  ( |_ `  ( ( ( pi  /  2
)  +  x )  /  pi ) ) )  -  ( pi 
/  2 ) )  <  ( ( pi  x.  ( ( ( pi  /  2 )  +  x )  /  pi ) )  -  (
pi  /  2 ) )  <->  ( ( |_
`  ( ( ( pi  /  2 )  +  x )  /  pi ) )  <_  (
( ( pi  / 
2 )  +  x
)  /  pi )  /\  ( ( ( pi  /  2 )  +  x )  /  pi )  =/=  ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) ) ) ) )
152151adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  -.  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ )  ->  ( ( ( pi  x.  ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) ) )  -  ( pi  /  2
) )  <  (
( pi  x.  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  -  ( pi 
/  2 ) )  <-> 
( ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) )  <_  (
( ( pi  / 
2 )  +  x
)  /  pi )  /\  ( ( ( pi  /  2 )  +  x )  /  pi )  =/=  ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) ) ) ) )
153136, 139, 152mpbir2and 913 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  -.  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ )  ->  ( ( pi  x.  ( |_ `  ( ( ( pi  /  2
)  +  x )  /  pi ) ) )  -  ( pi 
/  2 ) )  <  ( ( pi  x.  ( ( ( pi  /  2 )  +  x )  /  pi ) )  -  (
pi  /  2 ) ) )
154 divcan2 9994 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( pi  / 
2 )  +  x
)  e.  CC  /\  pi  e.  CC  /\  pi  =/=  0 )  ->  (
pi  x.  ( (
( pi  /  2
)  +  x )  /  pi ) )  =  ( ( pi 
/  2 )  +  x ) )
15565, 71, 154mp3an23 1306 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( pi  /  2
)  +  x )  e.  CC  ->  (
pi  x.  ( (
( pi  /  2
)  +  x )  /  pi ) )  =  ( ( pi 
/  2 )  +  x ) )
15619, 155syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  CC  ->  (
pi  x.  ( (
( pi  /  2
)  +  x )  /  pi ) )  =  ( ( pi 
/  2 )  +  x ) )
157156oveq1d 6101 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  (
( pi  x.  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  -  ( pi 
/  2 ) )  =  ( ( ( pi  /  2 )  +  x )  -  ( pi  /  2
) ) )
158 pncan2 9609 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( pi  /  2
)  e.  CC  /\  x  e.  CC )  ->  ( ( ( pi 
/  2 )  +  x )  -  (
pi  /  2 ) )  =  x )
15917, 158mpan 670 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  (
( ( pi  / 
2 )  +  x
)  -  ( pi 
/  2 ) )  =  x )
160157, 159eqtrd 2470 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
( pi  x.  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  -  ( pi 
/  2 ) )  =  x )
161122, 160syl 16 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR  ->  (
( pi  x.  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  -  ( pi 
/  2 ) )  =  x )
162161adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  -.  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ )  ->  ( ( pi  x.  ( ( ( pi 
/  2 )  +  x )  /  pi ) )  -  (
pi  /  2 ) )  =  x )
163153, 162breqtrd 4311 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  -.  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ )  ->  ( ( pi  x.  ( |_ `  ( ( ( pi  /  2
)  +  x )  /  pi ) ) )  -  ( pi 
/  2 ) )  <  x )
164 peano2re 9534 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( |_ `  ( ( ( pi  /  2
)  +  x )  /  pi ) )  e.  RR  ->  (
( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  +  1 )  e.  RR )
165140, 164syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR  ->  (
( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  +  1 )  e.  RR )
166 remulcl 9359 . . . . . . . . . . . . . . . . . . 19  |-  ( ( pi  e.  RR  /\  ( ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) )  +  1 )  e.  RR )  ->  ( pi  x.  ( ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) )  +  1 ) )  e.  RR )
16738, 165, 166sylancr 663 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  (
pi  x.  ( ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) )  +  1 ) )  e.  RR )
168 flltp1 11642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( pi  / 
2 )  +  x
)  /  pi )  e.  RR  ->  (
( ( pi  / 
2 )  +  x
)  /  pi )  <  ( ( |_
`  ( ( ( pi  /  2 )  +  x )  /  pi ) )  +  1 ) )
169130, 168syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR  ->  (
( ( pi  / 
2 )  +  x
)  /  pi )  <  ( ( |_
`  ( ( ( pi  /  2 )  +  x )  /  pi ) )  +  1 ) )
170130, 165, 142, 169ltmul2dd 11071 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  (
pi  x.  ( (
( pi  /  2
)  +  x )  /  pi ) )  <  ( pi  x.  ( ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) )  +  1 ) ) )
171148, 167, 149, 170ltsub1dd 9943 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR  ->  (
( pi  x.  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  -  ( pi 
/  2 ) )  <  ( ( pi  x.  ( ( |_
`  ( ( ( pi  /  2 )  +  x )  /  pi ) )  +  1 ) )  -  (
pi  /  2 ) ) )
172161, 171eqbrtrrd 4309 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR  ->  x  <  ( ( pi  x.  ( ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) )  +  1 ) )  -  (
pi  /  2 ) ) )
173172adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  -.  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ )  ->  x  <  ( ( pi  x.  ( ( |_ `  ( ( ( pi  /  2
)  +  x )  /  pi ) )  +  1 ) )  -  ( pi  / 
2 ) ) )
174 resubcl 9665 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( pi  x.  ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) ) )  e.  RR  /\  ( pi 
/  2 )  e.  RR )  ->  (
( pi  x.  ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) ) )  -  ( pi  /  2
) )  e.  RR )
175146, 16, 174sylancl 662 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  (
( pi  x.  ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) ) )  -  ( pi  /  2
) )  e.  RR )
176175rexrd 9425 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR  ->  (
( pi  x.  ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) ) )  -  ( pi  /  2
) )  e.  RR* )
177 resubcl 9665 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( pi  x.  (
( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  +  1 ) )  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( ( pi  x.  ( ( |_
`  ( ( ( pi  /  2 )  +  x )  /  pi ) )  +  1 ) )  -  (
pi  /  2 ) )  e.  RR )
178167, 16, 177sylancl 662 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  (
( pi  x.  (
( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  +  1 ) )  -  ( pi 
/  2 ) )  e.  RR )
179178rexrd 9425 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR  ->  (
( pi  x.  (
( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  +  1 ) )  -  ( pi 
/  2 ) )  e.  RR* )
180 elioo2 11333 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( pi  x.  ( |_ `  ( ( ( pi  /  2
)  +  x )  /  pi ) ) )  -  ( pi 
/  2 ) )  e.  RR*  /\  (
( pi  x.  (
( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  +  1 ) )  -  ( pi 
/  2 ) )  e.  RR* )  ->  (
x  e.  ( ( ( pi  x.  ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) ) )  -  ( pi  /  2
) ) (,) (
( pi  x.  (
( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  +  1 ) )  -  ( pi 
/  2 ) ) )  <->  ( x  e.  RR  /\  ( ( pi  x.  ( |_
`  ( ( ( pi  /  2 )  +  x )  /  pi ) ) )  -  ( pi  /  2
) )  <  x  /\  x  <  ( ( pi  x.  ( ( |_ `  ( ( ( pi  /  2
)  +  x )  /  pi ) )  +  1 ) )  -  ( pi  / 
2 ) ) ) ) )
181176, 179, 180syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR  ->  (
x  e.  ( ( ( pi  x.  ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) ) )  -  ( pi  /  2
) ) (,) (
( pi  x.  (
( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  +  1 ) )  -  ( pi 
/  2 ) ) )  <->  ( x  e.  RR  /\  ( ( pi  x.  ( |_
`  ( ( ( pi  /  2 )  +  x )  /  pi ) ) )  -  ( pi  /  2
) )  <  x  /\  x  <  ( ( pi  x.  ( ( |_ `  ( ( ( pi  /  2
)  +  x )  /  pi ) )  +  1 ) )  -  ( pi  / 
2 ) ) ) ) )
182181adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  -.  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ )  ->  ( x  e.  ( ( ( pi  x.  ( |_ `  ( ( ( pi  /  2
)  +  x )  /  pi ) ) )  -  ( pi 
/  2 ) ) (,) ( ( pi  x.  ( ( |_
`  ( ( ( pi  /  2 )  +  x )  /  pi ) )  +  1 ) )  -  (
pi  /  2 ) ) )  <->  ( x  e.  RR  /\  ( ( pi  x.  ( |_
`  ( ( ( pi  /  2 )  +  x )  /  pi ) ) )  -  ( pi  /  2
) )  <  x  /\  x  <  ( ( pi  x.  ( ( |_ `  ( ( ( pi  /  2
)  +  x )  /  pi ) )  +  1 ) )  -  ( pi  / 
2 ) ) ) ) )
183133, 163, 173, 182mpbir3and 1171 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  -.  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ )  ->  x  e.  ( ( ( pi  x.  ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) ) )  -  ( pi  /  2
) ) (,) (
( pi  x.  (
( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  +  1 ) )  -  ( pi 
/  2 ) ) ) )
184 oveq2 6094 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) )  ->  (
pi  x.  y )  =  ( pi  x.  ( |_ `  ( ( ( pi  /  2
)  +  x )  /  pi ) ) ) )
185184oveq1d 6101 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) )  ->  (
( pi  x.  y
)  -  ( pi 
/  2 ) )  =  ( ( pi  x.  ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) ) )  -  ( pi  /  2
) ) )
186 oveq1 6093 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) )  ->  (
y  +  1 )  =  ( ( |_
`  ( ( ( pi  /  2 )  +  x )  /  pi ) )  +  1 ) )
187186oveq2d 6102 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) )  ->  (
pi  x.  ( y  +  1 ) )  =  ( pi  x.  ( ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) )  +  1 ) ) )
188187oveq1d 6101 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) )  ->  (
( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) )  =  ( ( pi  x.  ( ( |_
`  ( ( ( pi  /  2 )  +  x )  /  pi ) )  +  1 ) )  -  (
pi  /  2 ) ) )
189185, 188oveq12d 6104 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) )  ->  (
( ( pi  x.  y )  -  (
pi  /  2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  ( pi  / 
2 ) ) )  =  ( ( ( pi  x.  ( |_
`  ( ( ( pi  /  2 )  +  x )  /  pi ) ) )  -  ( pi  /  2
) ) (,) (
( pi  x.  (
( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  +  1 ) )  -  ( pi 
/  2 ) ) ) )
190189eleq2d 2505 . . . . . . . . . . . . . . 15  |-  ( y  =  ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) )  ->  (
x  e.  ( ( ( pi  x.  y
)  -  ( pi 
/  2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  ( pi  /  2
) ) )  <->  x  e.  ( ( ( pi  x.  ( |_ `  ( ( ( pi 
/  2 )  +  x )  /  pi ) ) )  -  ( pi  /  2
) ) (,) (
( pi  x.  (
( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  +  1 ) )  -  ( pi 
/  2 ) ) ) ) )
191190rspcev 3068 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  e.  ZZ  /\  x  e.  ( (
( pi  x.  ( |_ `  ( ( ( pi  /  2 )  +  x )  /  pi ) ) )  -  ( pi  /  2
) ) (,) (
( pi  x.  (
( |_ `  (
( ( pi  / 
2 )  +  x
)  /  pi ) )  +  1 ) )  -  ( pi 
/  2 ) ) ) )  ->  E. y  e.  ZZ  x  e.  ( ( ( pi  x.  y )  -  (
pi  /  2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  ( pi  / 
2 ) ) ) )
192132, 183, 191syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  -.  ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ )  ->  E. y  e.  ZZ  x  e.  ( (
( pi  x.  y
)  -  ( pi 
/  2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  ( pi  /  2
) ) ) )
193127, 192sylbi 195 . . . . . . . . . . . 12  |-  ( x  e.  ( RR  \  { x  e.  CC  |  ( ( ( pi  /  2 )  +  x )  /  pi )  e.  ZZ } )  ->  E. y  e.  ZZ  x  e.  ( ( ( pi  x.  y )  -  (
pi  /  2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  ( pi  / 
2 ) ) ) )
194120, 193impbii 188 . . . . . . . . . . 11  |-  ( E. y  e.  ZZ  x  e.  ( ( ( pi  x.  y )  -  ( pi  /  2
) ) (,) (
( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) ) )  <->  x  e.  ( RR  \  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ } ) )
19534, 194bitri 249 . . . . . . . . . 10  |-  ( x  e.  U_ y  e.  ZZ  ( ( ( pi  x.  y )  -  ( pi  / 
2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) ) )  <->  x  e.  ( RR  \  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ } ) )
196195a1i 11 . . . . . . . . 9  |-  ( T. 
->  ( x  e.  U_ y  e.  ZZ  (
( ( pi  x.  y )  -  (
pi  /  2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  ( pi  / 
2 ) ) )  <-> 
x  e.  ( RR 
\  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ } ) ) )
19729, 30, 33, 196eqrd 3369 . . . . . . . 8  |-  ( T. 
->  U_ y  e.  ZZ  ( ( ( pi  x.  y )  -  ( pi  /  2
) ) (,) (
( pi  x.  (
y  +  1 ) )  -  ( pi 
/  2 ) ) )  =  ( RR 
\  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ } ) )
198197trud 1378 . . . . . . 7  |-  U_ y  e.  ZZ  ( ( ( pi  x.  y )  -  ( pi  / 
2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) ) )  =  ( RR  \  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ } )
199 retop 20315 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  e.  Top
200 iooretop 20320 . . . . . . . . 9  |-  ( ( ( pi  x.  y
)  -  ( pi 
/  2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  ( pi  /  2
) ) )  e.  ( topGen `  ran  (,) )
201200rgenw 2778 . . . . . . . 8  |-  A. y  e.  ZZ  ( ( ( pi  x.  y )  -  ( pi  / 
2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) ) )  e.  (
topGen `  ran  (,) )
202 iunopn 18486 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  A. y  e.  ZZ  ( ( ( pi  x.  y )  -  ( pi  / 
2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) ) )  e.  (
topGen `  ran  (,) )
)  ->  U_ y  e.  ZZ  ( ( ( pi  x.  y )  -  ( pi  / 
2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) ) )  e.  (
topGen `  ran  (,) )
)
203199, 201, 202mp2an 672 . . . . . . 7  |-  U_ y  e.  ZZ  ( ( ( pi  x.  y )  -  ( pi  / 
2 ) ) (,) ( ( pi  x.  ( y  +  1 ) )  -  (
pi  /  2 ) ) )  e.  (
topGen `  ran  (,) )
204198, 203eqeltrri 2509 . . . . . 6  |-  ( RR 
\  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ } )  e.  ( topGen `  ran  (,) )
205 rabss 3424 . . . . . . . 8  |-  ( { x  e.  CC  | 
( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ }  C_  RR 
<-> 
A. x  e.  CC  ( ( ( ( pi  /  2 )  +  x )  /  pi )  e.  ZZ  ->  x  e.  RR ) )
206 zre 10642 . . . . . . . . . . 11  |-  ( ( ( ( pi  / 
2 )  +  x
)  /  pi )  e.  ZZ  ->  (
( ( pi  / 
2 )  +  x
)  /  pi )  e.  RR )
207 remulcl 9359 . . . . . . . . . . 11  |-  ( ( ( ( ( pi 
/  2 )  +  x )  /  pi )  e.  RR  /\  pi  e.  RR )  ->  (
( ( ( pi 
/  2 )  +  x )  /  pi )  x.  pi )  e.  RR )
208206, 38, 207sylancl 662 . . . . . . . . . 10  |-  ( ( ( ( pi  / 
2 )  +  x
)  /  pi )  e.  ZZ  ->  (
( ( ( pi 
/  2 )  +  x )  /  pi )  x.  pi )  e.  RR )
209 resubcl 9665 . . . . . . . . . 10  |-  ( ( ( ( ( ( pi  /  2 )  +  x )  /  pi )  x.  pi )  e.  RR  /\  (
pi  /  2 )  e.  RR )  -> 
( ( ( ( ( pi  /  2
)  +  x )  /  pi )  x.  pi )  -  (
pi  /  2 ) )  e.  RR )
210208, 16, 209sylancl 662 . . . . . . . . 9  |-  ( ( ( ( pi  / 
2 )  +  x
)  /  pi )  e.  ZZ  ->  (
( ( ( ( pi  /  2 )  +  x )  /  pi )  x.  pi )  -  ( pi  /  2 ) )  e.  RR )
211 divcan1 9995 . . . . . . . . . . . . . 14  |-  ( ( ( ( pi  / 
2 )  +  x
)  e.  CC  /\  pi  e.  CC  /\  pi  =/=  0 )  ->  (
( ( ( pi 
/  2 )  +  x )  /  pi )  x.  pi )  =  ( ( pi 
/  2 )  +  x ) )
21265, 71, 211mp3an23 1306 . . . . . . . . . . . . 13  |-  ( ( ( pi  /  2
)  +  x )  e.  CC  ->  (
( ( ( pi 
/  2 )  +  x )  /  pi )  x.  pi )  =  ( ( pi 
/  2 )  +  x ) )
21319, 212syl 16 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
( ( ( pi 
/  2 )  +  x )  /  pi )  x.  pi )  =  ( ( pi 
/  2 )  +  x ) )
214213oveq1d 6101 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
( ( ( ( pi  /  2 )  +  x )  /  pi )  x.  pi )  -  ( pi  /  2 ) )  =  ( ( ( pi 
/  2 )  +  x )  -  (
pi  /  2 ) ) )
215214, 159eqtrd 2470 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
( ( ( ( pi  /  2 )  +  x )  /  pi )  x.  pi )  -  ( pi  /  2 ) )  =  x )
216215eleq1d 2504 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
( ( ( ( ( pi  /  2
)  +  x )  /  pi )  x.  pi )  -  (
pi  /  2 ) )  e.  RR  <->  x  e.  RR ) )
217210, 216syl5ib 219 . . . . . . . 8  |-  ( x  e.  CC  ->  (
( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ  ->  x  e.  RR ) )
218205, 217mprgbir 2781 . . . . . . 7  |-  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ }  C_  RR
219 uniretop 20316 . . . . . . . 8  |-  RR  =  U. ( topGen `  ran  (,) )
220219iscld2 18607 . . . . . . 7  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ }  C_  RR )  ->  ( { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ }  e.  (
Clsd `  ( topGen ` 
ran  (,) ) )  <->  ( RR  \  { x  e.  CC  |  ( ( ( pi  /  2 )  +  x )  /  pi )  e.  ZZ } )  e.  (
topGen `  ran  (,) )
) )
221199, 218, 220mp2an 672 . . . . . 6  |-  ( { x  e.  CC  | 
( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ }  e.  ( Clsd `  ( topGen ` 
ran  (,) ) )  <->  ( RR  \  { x  e.  CC  |  ( ( ( pi  /  2 )  +  x )  /  pi )  e.  ZZ } )  e.  (
topGen `  ran  (,) )
)
222204, 221mpbir 209 . . . . 5  |-  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ }  e.  (
Clsd `  ( topGen ` 
ran  (,) ) )
22327tgioo2 20355 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
224223fveq2i 5689 . . . . 5  |-  ( Clsd `  ( topGen `  ran  (,) )
)  =  ( Clsd `  ( ( TopOpen ` fld )t  RR ) )
225222, 224eleqtri 2510 . . . 4  |-  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ }  e.  (
Clsd `  ( ( TopOpen
` fld
)t 
RR ) )
226 restcldr 18753 . . . 4  |-  ( ( RR  e.  ( Clsd `  ( TopOpen ` fld ) )  /\  {
x  e.  CC  | 
( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ }  e.  ( Clsd `  ( ( TopOpen
` fld
)t 
RR ) ) )  ->  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ }  e.  (
Clsd `  ( TopOpen ` fld ) ) )
22728, 225, 226mp2an 672 . . 3  |-  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ }  e.  (
Clsd `  ( TopOpen ` fld ) )
22827cnfldtopon 20337 . . . . 5  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
229228toponunii 18512 . . . 4  |-  CC  =  U. ( TopOpen ` fld )
230229cldopn 18610 . . 3  |-  ( { x  e.  CC  | 
( ( ( pi 
/  2 )  +  x )  /  pi )  e.  ZZ }  e.  ( Clsd `  ( TopOpen ` fld ) )  ->  ( CC  \  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ } )  e.  ( TopOpen ` fld ) )
231227, 230ax-mp 5 . 2  |-  ( CC 
\  { x  e.  CC  |  ( ( ( pi  /  2
)  +  x )  /  pi )  e.  ZZ } )  e.  ( TopOpen ` fld )
23226, 231eqeltri 2508 1  |-  ( `' cos " ( CC 
\  { 0 } ) )  e.  (
TopOpen ` fld )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369   T. wtru 1370    e. wcel 1756    =/= wne 2601   A.wral 2710   E.wrex 2711   {crab 2714    \ cdif 3320    C_ wss 3323   {csn 3872   U_ciun 4166   class class class wbr 4287    e. cmpt 4345   `'ccnv 4834   ran crn 4836   "cima 4838   Fun wfun 5407    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279   RR*cxr 9409    < clt 9410    <_ cle 9411    - cmin 9587    / cdiv 9985   2c2 10363   ZZcz 10638   RR+crp 10983   (,)cioo 11292   |_cfl 11632   sincsin 13341   cosccos 13342   picpi 13344   ↾t crest 14351   TopOpenctopn 14352   topGenctg 14368  ℂfldccnfld 17793   Topctop 18473   Clsdccld 18595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ioc 11297  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-fac 12044  df-bc 12071  df-hash 12096  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-ef 13345  df-sin 13347  df-cos 13348  df-pi 13350  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-fbas 17789  df-fg 17790  df-cnfld 17794  df-top 18478  df-bases 18480  df-topon 18481  df-topsp 18482  df-cld 18598  df-ntr 18599  df-cls 18600  df-nei 18677  df-lp 18715  df-perf 18716  df-cn 18806  df-cnp 18807  df-haus 18894  df-tx 19110  df-hmeo 19303  df-fil 19394  df-fm 19486  df-flim 19487  df-flf 19488  df-xms 19870  df-ms 19871  df-tms 19872  df-cncf 20429  df-limc 21316  df-dv 21317
This theorem is referenced by:  dvtan  28395
  Copyright terms: Public domain W3C validator